In silico characterization and gene expression analysis of late-embryogenesis abundant proteins of Agave tequilana Weber var. azul

keywords: AgaveLEAP, dehydrins, gene expression pattern, in silico structural analysis

Abstract

Background/ Studied species: Agave tequilana Weber var. azul is an important crop in Mexico, used for tequila production. Many species of Agave grow in arid lands and are highly tolerant to those environmental conditions. However, the molecular bases of mechanisms selected in agaves to face abiotic stress, have not been described.

Hypotheses: Late-embryogenesis abundant proteins (LEAPs), a superfamily closely associated to abiotic stress responses in plants, are a key element in agave responses to arid environments.

Methods: Transcriptomic data from A. tequilana were used to perform in silico analyses to identify genes encoding Agave LEAPs. We compare their structural characteristics and their similarity/divergence with described LEAPs from other plant species using bioinformatics. The abundance of the AteqLEAP transcripts in vegetative organs and in response to high temperatures was determined by qRT-PCR.

Results: We identified three structurally different AteqLEAPs. AteqLEA_5Bs show low similarity to LEAPs known as “atypical” (containing LEA_3 domain); and they exhibit an unexpected high and constitutive expression pattern in leaves. But AteqLEA_5C (LEA_2) transcripts are low-expressed in all the organs analyzed. Two isoforms of AteqDHN type SK3 show the typical structural disorder and hydrophilicity of dehydrins and are highly expressed in undeveloped leaves, vegetative meristem and stem.

Conclusions: AteqLEAP_5Bs seem to play a major and preventive protective role in fully photosynthetic leaves as in a “primed state”; whereas AteqDHNs presumably play a role protecting tissues in differentiation stage as meristem and developing leaves, and storage tissues such as the agave stem.

Downloads

Download data is not yet available.
In silico characterization and gene expression analysis of late-embryogenesis abundant proteins of Agave tequilana Weber var. azul

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 3: 403-410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2

Amara I, Zaidi I, Masmoudi K, Ludevid M, Pagès M, Goday A, Brini F. 2014. Insights into Late Embryogenesis Abundant (LEA) Proteins in Plants: From Structure to the Functions. American Journal of Plant Sciences 5: 3440-3455. DOI: https://doi.org/10.4236/ajps.2014.522360

Artur MAS, Zhao T, Ligterink W, Schranz E, Hilhorst H. 2019. Dissecting the Genomic Diversification of Late Embryogenesis Abundant (LEA) Protein Gene Families in Plants. Genome Biology and Evolution 11: 459-471. DOI: https://doi.org/10.1093/gbe/evy248

Artus NN, Uemura M, Steponkus PL, Gilmour JS, Lin C, Thomashow MF. 1996. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proceedings of the National Academy of Sciences 93: 13404-13409. DOI: https://doi.org/10.1073/pnas.93.23.13404

Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarruvias AA. 2008. The enigmatic LEA proteins and other hydrophilins. Plant Physiology 148: 6-24. DOI: https://doi.org/10.1104/pp.108.120725

Bechtold U. 2018. Plant life in extreme environments: how do you improve drought tolerance? Frontiers in Plant Science 9: 543. DOI: https://doi.org/10.3389/fpls.2018.00543

Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D. 2014. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 26: 3148-66. DOI: https://doi.org/10.1105/tpc.114.127316

Cervantes-Pérez SA, Espinal-Centeno A, Oropeza-Aburto A, Caballero-Pérez J, Falcon F, Aragón-Raygoza A, Sánchez-Segura L, Herrera-Estrella L, Cruz-Hernández A, Cruz-Ramírez A. 2018. Transcriptional profiling of the CAM plant Agave salmiana reveals conservation of a genetic program for regeneration. Developmental Biology 442: 28-39. DOI: https://doi.org/10.1016/j.ydbio.2018.04.018

Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C, Lei C, Gong M. 2019. The role of the Late Embryogenesis-Abundant (LEA) protein family in development and the abiotic stress response: A comprehensive expression analysis of potato (Solanum tuberosum). Genes 10: 148. DOI: https://doi.org/10.3390/genes10020148

Ciccarelli DF, Bork P. 2005. The WHy domain mediates the response to desiccation in plants and bacteria. Bioinformatics 21: 1304-1307. DOI: https://doi.org/10.1093/bioinformatics/bti221

Costa MC, Artur AM, Maia J, Jonkheer E, Derks FLM, Nijveen H, Williams B, Mundree GS, Jiménez-Gómez JM, Hesselink T, Schijlen E, Ligterink W, Oliver MJ, Farrant JM, Hilhorst HW. 2017. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nature Plants 3: 17038. DOI: https://doi.org/10.1038/nplants.2017.38

Cuevas-Velázquez CL, Rendón-Luna DF, Covarrubias AA. 2014. Dissecting the cryoprotection mechanisms for dehydrins. Frontiers in Plant Science 5: 583. DOI: https://doi.org/10.3389/fpls.2014.00583

Cui H, Wang Y, Yu T, Chen S, Chen Y, Lu C. 2020. Heterologous expression of three ammopiptanthus mongolicus dehydrin genes confers abiotic stress tolerance in Arabidopsis thaliana. Plants 9: 193. DOI: https://doi.org/10.3390/plants9020193

Dang NX, Popova AV, Hundertmark M, Hincha DK. 2014. Functional characterization of selected LEA proteins from Arabidopsis thaliana in yeast and in vitro. Planta 240: 325-336. DOI: https://doi.org/10.1007/s00425-014-2089-z

Deng G, Huang X, Xie L, Tan S, Gbokie T Jr, Bao Y, Xie Z, Yi K. 2019. Identification and Expression of SAUR Genes in the CAM Plant Agave. Genes 10: 555. DOI: https://doi.org/10.3390/genes10070555

Dirk LMA, Abdel CG, Ahmad I, Neta ICS, Pereira CC, Pereira FECB, Unêda-Trevisoli SH, Pinheiro DG, Downie AB. 2020. late embryogenesis abundant protein-client protein interactions. Plants 9: 814. DOI: https://doi.org/10.3390/plants9070814

Dure L, Greenway SC, Galau GA. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20: 4162-4168. DOI: https://doi.org/10.1021/bi00517a033

El-Gebali S, Nistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson JL, Salazar GA, Smart A, Sonnhammer LLE, Hirsh L, Paladin L, Piovesan D, Tosatto ESC, Finn RD. 2019. The Pfam protein families database in 2019. Nucleic Acids Research 47: D427-D432. DOI: https://doi.org/10.1093/nar/gky995

Farrant JM, Cooper K, Hilgart A, Abdalla KO, Bentley J, Thomson JA, Dace HJ, Peton N, Mundree SG, Rafudeen MS. 2015. A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). Planta 242: 407-426. DOI: https://doi.org/10.1007/s00425-015-2320-6

Galau GA, Dure L. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization. Biochemistry 20: 4169-4178. DOI: https://doi.org/10.1021/bi00517a034

Galau GA, Hughes DW, Dure III L. 1986. Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Molecular Biology 7: 155-170. DOI: https://doi.org/10.1007/BF00021327

Galau GA, Wang HY, Hughes DW. 1993. Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins. Plant Physiology 101: 695-696. DOI: https://doi.org/10.1104/pp.101.2.695

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31: 3784-3788. DOI: https://doi.org/10.1093/nar/gkg563

Gentry HS. 2003. Agaves of Continental North America. University of Arizona Press, Tucson, AZ, USA. ISBN: 9780816507757

Giarola V, Bartels D. 2015. What can we learn from the transcriptome of the resurrection plant Craterostigma plantagineum? Planta 242: 427-34. DOI: https://doi.org/10.1007/s00425-015-2327-z

Gosti F, Bertauche N, Vartanian N, Giraudat J. 1995. Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Molecular and General Genetics 246: 10-18. DOI: https://doi.org/10.1007/bf00290128

Graether SP, Boddington KF. 2014. Disorder and function: a review of the dehydrin protein family. Frontiers in Plant Science 5: 576. DOI: https://doi.org/10.3389/fpls.2014.00576

Gross SM, Martin JA, Simpson J, Abraham-Juarez MJ, Wang Z, Visel A. 2013. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana. BMC Genomics 14: 563. DOI: https://doi.org/10.1186/1471-2164-14-563

Guo W, Ward RW, Thomashow MF. 1992. Characterization of a cold-regulated wheat gene related to Arabidopsis cor47. Plant Physiology 100: 915-922. DOI: https://doi.org/10.1104/pp.100.2.915

Guo X, Zhang L, Wang X, Zhang M, Xi Y, Wang A, Zhu J. 2019. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PLoS One 14: 11. DOI: https://doi.org/10.1371/journal.pone.0225090

Haaning S, Radutoiu S, Hoffmann SV, Dittmer J, Giehm L, Otzen DE, Stougaard J. 2008. An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro. The Journal of Biological Chemistry 283: 31142-52. DOI: https://doi.org/10.1074/jbc.M805024200

He S, Tan L, Hu Z, Chen G, Wang G, Hu T. 2012. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Molecular Genetics and Genomics 287: 39-54. DOI: https://doi.org/10.1007/s00438-011-0660-x

Hu T, Liu Y, Zhu S, Qin J, Li W, Zhou N. 2019. Overexpression of OsLea14-A improves the tolerance of rice and increases Hg accumulation under diverse stresses. Environmental Science and Pollution Research 26: 10537-10551. DOI: https://doi.org/10.1007/s11356-019-04464-z

Huang X, Xiao M, Xi J, He C, Zheng J, Chen H, Gao J, Zhang S, Wu W, Liang Y, Xie L, Yi K. 2019. De novo transcriptome assembly of Agave H11648 by Illumina sequencing and identification of cellulose synthase genes in Agave species. Genes 10: 103. DOI: https://doi.org/10.3390/genes10020103

Hughes SL, Schart V, Malcolmson J, Hogarth KA, Martynowicz DM, Tralman-Baker E, Patel SN, Graether SP. 2013. The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiology 163: 1376-1386. DOI: https://doi.org/10.1104/pp.113.226803

Hundertmark M, Hincha DK. 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9: 118. DOI: https://doi.org/10.1186/1471-2164-9-118

Kim HS, Lee JH, Kim JJ, Kim CH, Jun SS, Hong YN. 2005. Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344: 115-23. DOI: https://doi.org/10.1016/j.gene.2004.09.012

Kimura M, Yamamoto YY, Seki M, Sakurai T, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M. 2003. Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray. Photochemistry and Photobiology 77: 226-233. DOI: https://doi.org/10.1562/0031-8655(2003)077<0226:ioagrb>2.0.co;2

Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR. 2005. Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Molecules and Cells 19: 212-218.

Liu Y, Xie L, Liang X, Zhang S. 2015. CpLEA5, the late embryogenesis abundant protein gene from Chimonanthus praecox, possesses low temperature and osmotic resistances in prokaryote and eukaryotes. International Journal of Molecular Sciences 16: 26978-26990. DOI: https://doi.org/10.3390/ijms161126006

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CT method. Methods 25: 402-408. DOI: https://doi.org/10.1006/meth.2001.1262

Luján R, Lledías F, Martínez LM, Barreto R, Cassab GI, Nieto-Sotelo J. Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber. 2009. Plant, Cell & Environment 32: 1791-803. DOI: https://doi.org/10.1111/j.1365-3040.2009.02035.x

Lv A, Fan N, Xie J, Yuan S, An Y, Zhou P. 2017. Expression of CdDHN4, a novel YSK2 -type dehydrin gene from bermudagrass, responses to drought stress through the ABA-dependent signal pathway. Frontiers in Plant Science 8: 748. DOI: https://doi.org/10.3389/fpls.2017.00748

Magwanga RO, Lu P, Kirungu JN, Lu H, Wang X, Cai X, Zhou Z, Zhang Z, Salih H, Wang K, Liu F. 2018. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics 19: 6. DOI: https://doi.org/10.1186/s12863-017-0596-1

Maitra N, Cushman JC. 1994. Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late-embryogenesis-abundant protein. Plant Physiology 106: 805-806. DOI: https://doi.org/10.1104/pp.106.2.805

Manfre AJ, Lanni LM, Marcotte WR. 2006. The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiology 140: 140-149. DOI: https://doi.org/10.1104/pp.105.072967

Martínez-Hernández A, Mena-Espino ME, Herrera-Estrella AH, Martínez-Hernández P. 2010. Construcción de bibliotecas de ADNc y análisis de expresión génica por RT-PCR en agaves. Revista Latinoamericana de Química 38: 21-44.

Mertens J, Aliyu H, Cowan DA. 2018. LEA Proteins and the Evolution of the WHy Domain. Applied and Environmental Microbiology 84: e00539-18. DOI: https://doi.org/10.1128/AEM.00539-18

Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown D, Chang H-Y, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi Huaiyu, NDA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yit YS, Finn RD. 2019. InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research 47: 351-360. DOI: https://doi.org/10.1093/nar/gky1100

Monroy-González Z, Martínez-Hernández A. 2019. Identificación de cDNAs de Agave tequilana Weber Var. azul similares a furostanol glicósido 26-o-?-glucosidasas. Revista Fitotécnica Mexicana 42: 21-44. DOI: https://doi.org/10.35196/rfm.2019.4.439-447

Moons A, De Keyser A, Van Montagu M. 1997. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191: 197-204. DOI: https://doi.org/10.1016/s0378-1119(97)00059-0

Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL. 2006. Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. The Plant Journal 48: 743-756. DOI: https://doi.org/10.1111/j.1365-313X.2006.02911.x

Nagaraju M, Kumar SA, Reddy PS, Kumar A, Rao DM, Kavi Kishor PB. 2019. Genome-scale identification, classification, and tissue specific expression analysis of late embryogenesis abundant (LEA) genes under abiotic stress conditions in Sorghum bicolor L. PLoS One 14: e0209980. DOI: https://doi.org/10.1371/journal.pone.0209980

NCBI Resource Coordinators. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 44: 7-19. DOI: https://doi.org/10.1093/nar/gkv1290

Nobel PS, Smith SD. 1983. High and low temperature tolerances and their relationships to distribution of agaves. Plant, Cell & Environment 6: 711-719. DOI: https://doi.org/10.1111/1365-3040.ep11589339

Nobel PS. 1988. Environmental Biology of Agaves and Cacti. Cambridge, UK: Cambridge University Press. ISBN: 978-052-1543-34-7

Nobel PS, Valenzuela AG. 1987. Environmental responses and productivity of the CAM plant, Agave tequilana. Agricultural and Forest Meteorology 39: 319-334. DOI: https://doi.org/10.1016/0168-1923(87)90024-4

Piatkowski D, Schneider K, Salamini F, Bartels D. 1990. Characterization of five abscisic acid-responsive cDNA clones isolated from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes. Plant Physiology 94: 1682-1688. DOI: https://doi.org/10.1104/pp.94.4.1682

Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET. 2004. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology 54: 743-753. DOI: https://doi.org/10.1023/B:PLAN.0000040903.66496.a4

Ramírez-Tobías HM, Peña-Valdivia CB, Aguirre JR. 2014. Respuestas bioquímico-fisiológicas de especies de Agave a la restricción de humedad. Botanical Sciences 92: 131-139. DOI: https://doi.org/10.17129/botsci.156

Riley AC, Ashlock DA, Graether SP. 2019. Evolution of the modular, disordered stress proteins known as dehydrins. PLoS One 14: e0211813. DOI: https://doi.org/10.1371/journal.pone.0211813

Salleh FM, Evans K, Goodall B, Machin H, Mowla SB, Mur LA, Runions J, Theodoulou FL, Foyer CH, Rogers HJ. 2012. A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses. Plant Cell & Environment 35: 418-429. DOI: https://doi.org/10.1111/j.1365-3040.2011.02394.x

Sarwar MB, Ahmad Z, Rashid B, Hassan S, Gregersen PL, Leyva MO, Nagy I, Asp T, Husnain T. 2019. De novo assembly of Agave sisalana transcriptome in response to drought stress provides insight into the tolerance mechanisms. Scientific Reports 9: 396. DOI: https://doi.org/10.1038/s41598-018-35891-6

Shi J, Liu M, Chen Y, Wang J, Lu C. 2016. Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress. Plant Growth Regulation 79: 71-80. DOI: https://doi.org/10.1007/s10725-015-0112-4

Shakeel SN, Aman S, Haq NU, Heckathorn SA, Luthe D. 2013. Proteomic and transcriptomic analyses of Agave americana in response to heat stress. Plant Molecular Biology Reporter 31: 840-851. DOI: https://doi.org/10.1007/s11105-013-0555-6

Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. 2013. New and continuing developments at PROSITE. Nucleic Acids Research 41(Database issue): D344-7. DOI: https://doi.org/10.1093/nar/gks1067

Simpson J, Martínez-Hernández A, Abraham-Juárez MJ, Delgado-Sandoval S, Sánchez-Villarreal A, Cortés-Romero C. 2011. Genomic resources and transcriptome mining in Agave tequilana. GCB Bioenergy 3: 25-36. DOI: https://doi.org/10.1111/j.1757-1707.2010.01079.x

Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL. 2005. Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Science 14: 2601-2609. DOI: https://doi.org/10.1110/ps.051579205

Singh KK, Graether SP. 2020. Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. PLoS One 15: e0237177. DOI: https://doi.org/10.1371/journal.pone.0237177

Stewart JR. 2015. Agave as a model CAM crop system for a warming and drying world. Frontiers in Plant Science 24: 684. DOI: https://doi.org/10.3389/fpls.2015.00684

Strimbeck R. 2017. Hiding in plain sight: the F segment and other conserved features of seed plant SKn dehydrins. Planta 245: 1061-1066. DOI: https://doi.org/10.1007/s00425-017-2679-7

Tamayo-Ordóñez MC, Rodriguez-Zapata LC, Narváez-Zapata JA, Tamayo-Ordóñez YJ, Ayil-Gutiérrez BA, Barredo-Pool F, Sánchez-Teyer LF. 2016. Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L. Journal of Plant Physiology 195: 80-94. DOI: https://doi.org/10.1016/j.jplph.2016.03.009

Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. 2003. PANTHER: a library of protein families and subfamilies indexed by function. Genome Research 13: 2129-41. DOI: https://doi.org/10.1101/gr.772403

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191. DOI: https://doi.org/10.1093/bioinformatics/btp033

Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J. 2014. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biology 14: 290. DOI: https://doi.org/10.1186/s12870-014-0290-7

Xiang D, Man L. 2018. EhEm1, a novel Em-like protein from Eutrema halophilum, confers tolerance to salt and drought stresses in rice. Molecular Breeding 38: 17. DOI: https://doi.org/10.1007/s11032-017-0750-5

Yu J, Lai Y, Wu X, Wu G, Guo C. 2016. Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochemical and Biophysical Research Communications 478: 703-709. DOI: https://doi.org/10.1016/j.bbrc.2016.08.010

Zegzouti H, Jones B, Marty C, Lelièvre JM, Latché A, Pech JC, Bouzayen M. 1997. Er5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Molecular Biology 35: 847-854. DOI: https://doi.org/10.1023/a:1005860302313

Zheng J, Su H, Lin R, Zhang H, Xia K, Jian S, Zhang M. 2019. Isolation and characterization of an atypical LEA gene (IpLEA) from Ipomoea pes-caprae conferring salt/drought and oxidative stress tolerance. Scientific Report 9: 14838. DOI: https://doi.org/10.1038/s41598-019-50813-w

Published
2021-11-10
How to Cite
Villegas-Camas, J., Verdel-Aranda, K., Lara-Reyna, J., & Martínez-Hernández, A. (2021). In silico characterization and gene expression analysis of late-embryogenesis abundant proteins of Agave tequilana Weber var. azul. Botanical Sciences, 100(1), 169-191. https://doi.org/10.17129/botsci.2861
Section
GENETICS / GENÉTICA