Seasonal changes in gas exchange and yield of 21 genotypes of Coffea arabica

keywords: Bean yield, coffee, drought, photosynthesis, water use efficiency

Abstract

Background: Coffee breeding programs in Ecuador have information on production and disease tolerance in many genotypes; however, they lack physiological information, especially on photosynthetic characteristics and their response to drought.

Questions: Whether high genetic variability among coffee genotypes will explains the photosynthetic and production differences expected? Will the physiological response to the dry season (DS) be different between genotypes?

Studied species: Coffea arabica L.

Study site and dates: Pichincha canton, Manabí province, Ecuador during March-April 2017 (rainy season, RS) and June-July 2017 (DS).

Methods: Leaf relative water content (RWC) and gas exchange of 21 coffee genotypes were measured during DS and RS. Coffee production during a period of three years was evaluated.

Results: Significant differences were found in RWC, photosynthetic rate (A), stomatal conductance (gs) and water use efficiency (WUE) among genotypes, between seasons, an interaction effect of genotype × season. Drought caused a significant reduction in A and gs of 30 and 44 % respectively, while WUE was not affected. A positive linear relationship was found between A and gs, and a negative relationship between A and the leaf-air vapor pressure gradient (DW) and between gs and DW. Differences in coffee production were found among genotypes.

Conclusions: The high genetic variability of C. arabica genotypes may explain the significant differences in RWC and gas exchange and interaction genotypes x season, suggesting a differential response of each genotype to drought. Eleven of the 21 coffee genotypes were sensitive to drought, but showed different responses, suggesting possible genotypic differences in tolerance.

Translate stop   Translate stop  

Downloads

Download data is not yet available.

Author Biographies

Wilmer Tezara, Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres, Estación Experimental Mutile, Esmeraldas

Head of Laboratory of Ecophysiology of Xerophytes,  Centro de Botanica Tropical, IBE, Facultad de Ciencias, UCV

 

The line of research in this laboratory is: 1) Photosynthesis, water relations and efficiency of resource use of species with different routes of carbon fixation in natural and agro-ecosystems.

Translate stop  
Luis Alberto Duicela Guambi, Carrera de Ingeniería Agrícola, GI-Fitogenotecnia. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, vía Calceta-El Morro

 

Translate stop   Translate stop  
Víctor Hugo Reynel Chila, Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres, Estación Experimental Mutile, Esmeraldas

 

Translate stop  
Rene Nazareno Ortiz , Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres, Estación Experimental Mutile, Esmeraldas

 

Translate stop  
Milton José Bolaños Ortega, Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres, Estación Experimental Mutile, Esmeraldas

 

Translate stop  
Seasonal changes in gas exchange and yield of 21 genotypes of <em>Coffea arabica</em>

References

ANACAFÉ [Asociación Nacional del Café, Guatemala]. 2019. Guía de variedades de café. Guatemala: Asociación Nacional de Café. https://acortar.link/bTvE1d (accessed January 29, 2020)

Barros RS, Mota JWS, DaMatta FM, Maestri M. 1997. Decline of vegetative growth in Coffea arabica L. in relation to leaf temperature, water potential and stomatal conductance. Field Crops Research 54: 65-72. DOI: https://doi.org/10.1016/S0378-4290(97)00045-2

Berlingeri C, Alvarado C, Silva R, Marín C, La Cruz L, Durán D, Medina A, Bustamante J. 2007. Evaluación agronómica de 18 líneas de café en la localidad de La Vitu, estado Trujillo, Venezuela. Bioagro 19: 27-33.

Bilskie J. 2001. Soil water status: content and potential. Campbell Scientific, Inc. App. Note: 2S-I. https://s.campbellsci.com/documents/fr/technical-papers/soilh20c.pdf (accessed November 21, 2021)

Bustamante J, Sarmiento A, Casanova A, Contreras E, Yánez C, Romero C, Peña I, Verenzuela A, Morales N, Garnica J, de Colmenares N. 2001. Caracterización de resistencia incompleta a Hemileia vastatrix en genotipos de café (Coffea arabica L.) variedad Bramón I. Bioagro 13: 65-70.

Caporaso N, Whitworth MB, Grebby S, Fisk ID. 2018. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging. Food Research International 106: 193-203. DOI: https://doi.org/10.1016/j.foodres.2017.12.031

Carelli MLC, Fahl JI, Ramalho JDC. 2006. Aspects of nitrogen metabolism in coffee plants. Brazilian Journal of Plant Physiology 18: 9-21. DOI: https://doi.org/10.1590/S1677-04202006000100002

Cavatte PC, Rodríguez-López NF, Martins SCV, Mattos MS, Sanglard LM, DaMatta FM. 2012. Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability. Journal of Experimental Botany 63: 3071-3082. DOI: https://doi.org/10.1093/jxb/ers027

Cornic G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture--not by affecting ATP synthesis. Trends in Plant Science 5: 187-188. DOI: https://doi.org/10.1016/S1360-1385(00)01625-3

DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME. 2003. Drought tolerance of two field-grown clones of Coffea canephora. Plant Science 164: 111-117. DOI: http://dx.doi.org/10.1016/S0168-9452(02)00342-4

DaMatta FM, Ramalho JDC. 2006. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18: 55-81. DOI: https://doi.org/10.1590/S1677-04202006000100006

DaMatta FM, Rena AB. 2001. Tolerância do café à seca. In: Zambolin L ed. Tecnologias de Produção de Café com Qualidade. pp.65-100. Brasil: Universidade Federal de Viçosa, Viçosa.

DaMatta FM. 2004a. Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research 86: 99-114. DOI: https://doi.org/10.1016/j.fcr.2003.09.001

DaMatta FM. 2004b. Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Brazilian Journal of Plant Physiology 16: 1-6. DOI: https://doi.org/10.1590/S1677-04202004000100001

DaMatta FM, Maestri M, Barros RS, Regazzi AJ. 1993. Water relations of coffee leaves (Coffea arabica and C. canephora) in response to drought. Journal of Horticultural Science 68: 741-746. DOI: https://doi.org/10.1080/00221589.1993.11516407

DaMatta FM, Godoy AG, Menezes-Silva PE, Martins SCV, Sanglard LMV, Morais LE, Torre-Neto A, Ghini R. 2016. Sustained enhancement of photosynthesis in co?ee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations Journal Experimental Botany 67: 341-352. DOI: https://doi.org/10.1093/jxb/erv463

DaMatta FM, Rahn E, Läderach P, Ghini R, Ramalho JC. 2019. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change 152: 167-178. DOI: https://doi.org/10.1007/s10584-018-2346-4

DaMatta FM, Ronchi CP, Maestri M, Barros RS. 2007. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology 19: 485-510. DOI: https://doi.org/10.1590/S1677-04202007000400014

Duicela L. 2017. Café robusta: Producción y poscosecha. In: Humus ESPAM MFL. Ecuador: Calceta-Manabí-Ecuador. p. 292. ISBN: 9789942859587

Duicela L. 2021. Productividad y estabilidad ambiental de clones de café robusta en distintas localidades cafetaleras del Ecuador. PhD. Thesis. Universidad del Zulia.

Duicela L, Corral R, Farfán D. 2003. El clima en las zonas de producción de café arábigo en el Ecuador. In: Caracterización física y organoléptica de cafés arábigos en los principales agros ecosistemas del Ecuador. P.70. Ecuador: INIAP Archivo Histórico.

Eskes AB. 1989. Resistance. In: Kushalappa AC, Eskes AB, Eds. Coffee Rust: Epidemiology, Resistance and Management. Boca Raton FL, USA: CRC Press. pp. 171-277.

ICO [International Coffee Organization]. 2020. http://www.ico.org/new_historical.asp (accessed March 19, 2020)

Jaimez RE, Amores-Puyutaxi F, Vasco A, Loor RG, Tarqui O, Quijano G, Jimenez JC, Tezara W. 2018. Photosynthetic response to low and high light of cacao growing without shade in an area of low evaporative demand. Acta Biológica Colombiana 23: 95-103. https://doi.org/10.15446/abc.v23n1.64962

Julca-Otiniano A, Alarcón-Águila G, Alvarado-Huamán L, Borjas-Ventura R, Castro-Cepero V. 2018. Comportamiento de tres cultivares de café (Catimor, Colombia y Costa Rica 95) en el valle de El Perené, Junín, Perú. Chilean Journal of Agricultural & Animal Sciences 34: 205-215. DOI: http://dx.doi.org/10.4067/S0719-38902018005000504

Lawlor DW, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany 103: 561-579. DOI: https://doi.org/10.1093/aob/mcn244

Marie L, Abdallah C, Campa C, Courtel P, Bordeaux M, Navarini L, Lonzarich V, Bosselmann AS, Turreira-García N, Alpizar E, Georget F. Breitler J-C, Etienne H, Bertrand B. 2020. G × E interactions on yield and quality in Coffea arabica: new F1 hybrids outperform American cultivars. Euphytica 216: 1-17. DOI: https://doi.org/10.1007/s10681-020-02608-8

Martins MQ, Rodrigues WP, Fortunato AS, Leitão AE, Rodrigues AP, Pais IP, Martins LD, Silva MJ, Reboredo FM, Partelli FL, Campostrini E, Tomaz MA, Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho JC. 2016. Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Frontiers in Plant Science 7: 1-18. DOI: https://doi.org/10.3389/fpls.2016.00947

Pinheiro HA. 2004. Physiological and morphological adaptations as associated with drought tolerance in robusta coffee (Coffea canephora Pierre var. kouillou). PhD. Thesis. Universidade Federal de Viçosa.

Pinheiro HA, DaMatta FM, Chaves ARM, Loureiro ME, Ducatti C. 2005. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany 96: 101-108. DOI: https://doi.org/10.1093/aob/mci154

Rodríguez-López NF, Martins SCV, Cavatte PC, Silva PEM, Morais LE, Pereira L F, Reis JV, Ávila RT, Godoy AG, Lavinski AO, DaMatta FM. 2014. Morphological and physiological acclimations of coffee seedlings to growth over a range of fixed or changing light supplies. Environmental and Experimental Botany 102: 1-10. DOI: https://doi.org/10.1016/j.envexpbot.2014.01.008

Romero JV, Camayo VGC, González MLF, Cortina GHA, Herrera PJC. 2010. Caracterización citogenética y morfológica de híbridos interespecíficos entre C. arabica y las especies diploides C. liberica y C. Eugenioides. Cenicafé 61: 206-221.

Semedo JN, Rodrigues AP, Lidon FC, Pais IP, Marques I, Gouveia D, Armengaud J, Silva MJ, Martins S, Semedo MC, Dubberstein D, Partelli FL, Reboredo FH, Scotti-Campos P, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. 2021. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. Tree Physiology 41: 708-727. DOI: https://doi.org/10.1093/treephys/tpaa158

Tezara W. 2017. Características ecofisiológicas y productivas del café y cacao In: Tezara W, Escalante E. eds. Bases agronómicas, fisiológicas y tecnológicas del café y cacao. Ecuador: Editorial CIDE. pp. 12-27 ISBN: 978-9942-8657-6-2.

Tezara W, Loyaga D, Mendoza P, Bolaños M, Reynel V. 2018. Intercambio gaseoso en café y su respuesta al déficit hídrico. Memorias del Instituto de Biología Experimental 9: 89-92.

Tezara Fernández W, Mendoza Cortez PJ, Loyaga Guerrero WD, Reynel Chila VH, Bolaños Ortega MJ. 2020. Capacidad fotosintética de 15 clones de café robusta (Coffea canephora) en Esmeraldas, Ecuador. Revista ESPAMCIENCIA 11: 19-27. DOI: https://doi.org/10.51260/revista_espamciencia.v11i2.206

Turner NC. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58: 339-366. https://doi.org/10.1007/BF02180062

Várzea VMP, Marques VD, Pereira AP, Silva MC. 2008. The use of Sarchimor derivatives in coffee breeding resistance to leaf rust. In: Proceedings of the 22nd International Conference on Coffee Science, ASIC. Campinas, SP, Brazil, pp.1424-1429. ISBN: 2900212219

Vuille MB, Raymond S, Keimig F. 2000. Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic Sea surface temperature anomalies. Jounal of Climate 1: 2520-2535. DOI: https://doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2

World Coffee Research 2018. Las variedades de café arábiga. https://varieties.worldcoffeeresearch.org/es (accessed February 19, 2018)

Published
2022-05-24
How to Cite
Tezara, W., Duicela Guambi, L. A., Reynel Chila, V. H., Nazareno Ortiz , R., & Bolaños Ortega, M. J. (2022). Seasonal changes in gas exchange and yield of 21 genotypes of Coffea arabica. Botanical Sciences, 100(4), 1000-1013. https://doi.org/10.17129/botsci.3023
Section
PHYSIOLOGY / FISIOLOGÍA