Antifungal activity of three Chilean plant extracts on Botrytis cinerea

  • Sofia Vio-Michaelis Pontificia Universidad Católica de Chile
  • Gastón Apablaza-Hidalgo Pontificia Universidad Católica de Chile
  • Miguel Gómez Pontificia Universidad Católica de Chile
  • Raúl Peña-Vera Pontificia Universidad Católica de Chile
  • Gloria Montenegro Pontificia Universidad Católica de Chile
Keywords: Ephedra breana, Fabiana imbricata fungicidal, Nolana sedifolia, phenolic compounds, plant extracts


The antifungal effect of the complete methanolic extract and a ethanolic fraction of three native Chilean plants (Ephedra breana, Fabiana imbricata, and Nolana sedifolia) were tested in vitro against Botrytis cinerea (the grey mold fungus) at 250 μg/mL for E. breana and N. sedifolia extracts and 400 μg/mL for F. imbricata extract. The results of this study showed that the ethanolic fractions of E. breana and N. sedifolia have a fungistatic effect during 14 days, while the fungus is exposed to the media with extracts. The complete methanolic fractions of the three studied plant species and the ethanolic fraction of F. imbricada did not show any fungicidal effect. The extracts and fractions were analyzed by high-performance liquid chromatography and the assayed compounds were: chlorogenic acid, cinnamic acid, p-coumaric acid, ferulic acid, vanillin, vanillic acid, rutin, caffeic acid, 3, 4-hydroxibenzoic acid (veratric acid), 3, 4-dimethoxycinnamic acid (caffeic acid dimethyl ester), and protocatechuic acid. Taking into account the antifungal activity of the ethanolic extracts of E. breana and N. sedifolia in in vitro assay, they may be an interesting alternative to control the phytopathogen Botrytis cinerea.


Download data is not yet available.
Antifungal activity of three Chilean plant extracts on <em>Botrytis cinerea</em>


Apablaza G. 2000. Patología de Cultivos Epidemiología y Control Holístico. Ediciones Universidad Católica de Chile, Santiago.

Cakir A., Kordali S., Kilic H., and Kaya E. 2005. Antifungal properties of essential oil and crude extracts of Hypericum linarioides Bosse. Biochemical Systematics and Ecology 33:245-256.

Clarke D.D. 1972. The resistance of potato tissue to the hyphal growth of fungal pathogens. Proceedings of the Royal Society of London. Series B. Biological Sciences 181:303-317.

Dastmalchi K., Damien-Dorman H.J., Laakso I. and Hiltunen R. 2007. Chemical composition and antioxidative activity of Molavian balm (Dracocephalum moldavica L.) extracts. LWT - Food Science and Technology 40:1655-1663.

Deba F., Xuan T.D., Yasuda M., and Tawata S. 2008. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. radiata. Food Control 19:346-352.

Downum K.R. 1992. Tansley Review No. 43. Light-activated plant defence. New Phytologist 122:401-420.

Feng W. and Zheng X. 2007. Essential oils to control Alternaria alternate in vitro and in vivo. Food Control 18:1126-1130.

González-Collado I., Macias-Sánchez A.J. and Hanson J.R. 2006. Fungal terpene metabolites: biosynthetic relationships and the control of phytopathogenic fungus Botrytis cinerea. Natural Products Reports 24:674-68.

Grover R.K. and Moore J.D. 1962. Toxicometric studies of fungicides against brown rot organisms Sclerotinia fructicola and S. laxa. Phytopathology 52:876-880.

Levin D.A. 1976. The chemical defenses of plants to pathogens and herbivores. Annual Review of Ecology and Systematics 7:121-159.

Narasimhan B., Ohlan S., Ohlan R., Judge V., and Narang R. 2009. Hansch analysis of veratric acid derivatives as antimicrobial agents. European Journal of Medicinal Chemistry 44:689-700.

Pearson. R.C. and Goheen A.C. Eds. 1988. Compendium of Grape Diseases. American Phytopathological Society Press, St. Paul.

Ruelas C., Tiznado-Hernandez M.E., Sanchez-Estrada A., RoblesBurgueño M.R., and Troncoso-Rojas R. 2006. Changes in phenolic acid content during Alternaria alternate infection in tomato fruit. Journal of Phytopathology 154:236–244.

San Francisco M. and Cooper-Driver G. 1984 Anti-microbial activity of phenolic acid in Pteridium aquilinum. American Fern Journal 74:87-96.

Serey R.A., Torres R. and Latorre B.A. 2007. Pre- and post-infection activity of new fungicides against Botrytis cinerea and other fungi causing decay of table grapes. Ciencia e Investigación Agraria 34:215-224.

Shahi, S.K., Shukla A.C., Bajaj, A.K., Midgerly, G., and Dikshit, A. 1999. Broad spectrum antimycotic drug control of fungal infection in human beings. Current Science 76:836-839.

VanEtten H.D., Mansfield J.W., Bailey J.A,. and Farmer E.E. 1994. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. The Plant Cell 6:1191-1192.

Veldhuizen E.J., Tjeerdsma-van Bokhoven J.L., Zweijtzer C., Burt S.A., and Haagsman H.P. 2006. Structural requirements for the antimicrobial activity of carvacrol. Journal of Agricultural and Food Chemistry 54:1874-1879.

Vermerris W. and Nicholson R. 2006. Phenolic Compound Biochemistry. Springer, Dordrecht.

Zadernowski R., Naczk M. and Nesterowicz J. 2005. Phenolic acid profiles in some small berries. Journal of Agricultural and Food Chemistry 53:2118-2124.

How to Cite
Vio-Michaelis, S., Apablaza-Hidalgo, G., Gómez, M., Peña-Vera, R., & Montenegro, G. (2012). Antifungal activity of three Chilean plant extracts on <em>Botrytis cinerea</em&gt;. Botanical Sciences, 90(2), 179-183.