Effect of drought and defoliation in the growth of seedlings of the tropical dry forest in western Mexico

keywords: Additive impact, Antagonistic impact, Leaf water potential, Stomatal conductance, Synergistic impact, Water managements

Abstract

Background: Although drought and defoliation increase the risk of death of the seedlings in tropical dry forests, few studies have evaluated the impact of this combined factors on the response of species.

Questions: What is the seedling water management strategy and how does it affect their growth? How does the combination of Drought×Defoliation impact the growth of the species?

Studied species: Guazuma ulmifolia Lam and Pithecellobium dulce (Roxb.) Benth.

Study sites and dates: The study was carried out in Autlán, Jalisco, México, between October 2021 and February 2022.

Methods: In a greenhouse, the seedlings were submitted to four combined water availability and defoliation treatments. The stomatal conductance and leaf water potential were recorded, and the relative growth rate, final biomass, and biomass allocation were calculated.

Results: G. ulmifolia showed to be an anisohydric species, registered higher growth, and was the most affected by drought, while P. dulce was more isohydric, registered lower growth and defoliation was the main stressor. The synergy between Drought×Defoliation negatively impacted the two species' relative growth rate.

Conclusions: Regardless of the water management strategy, in the early phases of development, the impact of drought and defoliation was magnified when stressors interacted. Therefore, Drought×Defoliation can limit the regeneration of species within forests, promoting the loss of biodiversity and detriment to the functioning of ecosystems.

Downloads

Download data is not yet available.
Effect of drought and defoliation in the growth of seedlings of the tropical dry forest in western Mexico

References

Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N, Pan Y, Raffa K, Sala A, Shaw DD, Stephenson NL, Tague C, Zeppel M. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist 208: 674-683. DOI: https://doi.org/10.1111/nph.13477

Asbjornsen H, McIntire CD, Vadeboncoeur MA, Jennings KA, Coble AP, Berry ZC. 2021. Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally occurring severe droughts. Tree Physiology 41: 1819-1835. DOI: https://doi.org/10.1093/treephys/tpab056

Attia Z, Domec JC, Oren R, Way DA, Moshelion M. 2015. Growth and physiological responses of isohydric and anisohydric poplars to drought. Journal of Experimental Botany 66: 4373-4381. DOI: https://doi.org/10.1093/jxb/erv195

Bach CE. 1994. Effects of herbivory and genotype on growth and survivorship of sand‐dune willow (Salix cordata). Ecological Entomology 19: 303-309. DOI: https://doi.org/10.1111/j.1365-2311.1994.tb00246.x

Bansal S, Hallsby G, Löfvenius MO, Nilsson MC. 2013. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Tree Physiology 33: 451-463. DOI: https://doi.org/10.1093/treephys/tpt019

Barton KE, Shiels AB. 2020. Additive and non‐additive responses of seedlings to simulated herbivory and drought. Biotropica 52: 1217-1228. DOI: https://doi.org/10.1111/btp.12829

Becklin KM, Kirkpatrick HE. 2006. Compensation through rosette formation: the response of scarlet gilia (Ipomopsis aggregata: Polemoniaceae) to mammalian herbivory. Canadian Journal of Botany 84: 1298-1303. DOI: https://doi.org/10.1139/b06-099

Bhusal N, Lee M, Han AR, Han A, Kim HS. 2020. Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. Forest Ecology and Management 465: 118099. DOI: https://doi.org/10.1016/j.foreco.2020.118099

Brodribb TJ, McAdam SA. 2011. Passive origins of stomatal control in vascular plants. Science 331: 582-585. DOI: https://doi.org/10.1126/science.1197985

Brodribb TJ, Powers J, Cochard H, Choat B. 2020. Hanging by a thread? Forests and drought. Science 368: 261-266. DOI: https://doi.org/10.1126/science.aat7631

Darling ES, Côté IM. 2008. Quantifying the evidence for ecological synergies. Ecology Letters 11: 1278-1286. DOI: https://doi.org/10.1111/j.1461-0248.2008.01243.x

Darling ES, McClanahan TR, Côté IM. 2010. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conservation Letters 3: 122-130. DOI: https://doi.org/10.1111/j.1755-263X.2009.00089.x

Ferraro DO, Oesterheld M. 2002. Effect of defoliation on grass growth. A quantitative review. Oikos 98: 125-133. DOI: https://doi.org/10.1034/j.1600-0706.2002.980113.x

Garcia LC, Eubanks MD. 2019. Overcompensation for insect herbivory: a review and meta‐analysis of the evidence. Ecology 100: e02585. DOI: https://doi.org/10.1002/ecy.2585

Geisler M, Buerki S, Serpe MD. 2022. Herbivory Amplifies Adverse Effects of Drought on Seedling Recruitment in a Keystone Species of Western North American Rangelands. Plants 11: 2628. DOI: https://doi.org/10.3390/plants11192628

Heywood VH, Brummitt RK, Culham A, Seberg O. 2007. Flowering plant families of the world (Vol. 88). Ontario: Firefly books. ISBN 978-1554072064

Hunt R. 1990. Basic Growth Analysis. London: Unwin Hyman. ISBN 0-04-445372-8.

Iqbal N, Masood A, Khan NA. 2012. Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica 50 161-170. DOI: 10.1007/s11099-012-0029-3

Kannenberg SA, Novick KA, Phillips RP. 2019. Anisohydric behavior linked to persistent hydraulic damage and delayed drought recovery across seven North American tree species. New Phytologist 222: 1862-1872. DOI: https://doi.org/10.1111/nph.15699

Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology 28: 1313-1320. DOI: https://doi.org/10.1111/1365-2435.12289

Lambers H, Chapin FS, Pons TL. 2008. Plant physiological ecology. New York: Springer. ISBN 978-0-387-78341 -3

Lemoine NP, Sheffield J, Dukes JS, Knapp AK, Smith MD. 2016. Terrestrial Precipitation Analysis (TPA): A resource for characterizing long‐term precipitation regimes and extremes. Methods in Ecology and Evolution 7: 1396-1401. DOI: https://doi.org/10.1111/2041-210X.12582

McVaugh R. 2001. Ochnaceae to Loasaceae. Flora Novo-Galiciana. Volume 3. United State of America: The University of Michigan Herbarium. ISBN: 0-9620733-5-0

Nobel PS. 1999. Physicochemical & environmental plant physiology. United Kingdom: Academic press. ISBN: 978-0-12-374143-1

Pennington TD, Sarukhán J. 2005. Árboles tropicales de México: manual para la identificación de las principales especies. México: Universidad Nacional Autonoma de México. ISBN: 9789703216437

Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen J HC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. DOI: http://dx.doi.org/10.1071/BT12225_CO https://doi.org/10.1071/BT12225

Pommerening A, Muszta A. 2015. Methods of modelling relative growth rate. Forest Ecosystems 2: 1-9. DOI: https://doi.org/10.1186/s40663-015-0029-4

Tekin E, Diamant ES, Cruz‐Loya M, Enriquez V, Singh N, Savage VM, Yeh PJ. 2020. Using a newly introduced framework to measure ecological stressor interactions. Ecology Letters 23: 1391-1403. DOI: https://doi.org/10.1111/ele.13533

Wisdom MJ, Vavra M, Boyd JM, Hemstrom MA, Ager AA, Johnson BK. 2006. Understanding ungulate herbivory-episodic disturbance effects on vegetation dynamics: knowledge gaps and management needs. Wildlife Society Bulletin 34: 283-292. DOI: https://doi.org/10.2193/0091-7648(2006)34[283:UUHDEO]2.0.CO;2

Wright IJ, BReich P, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U¨, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827. DOI: https://doi.org/10.1038/nature02403

Zhao W, Chen SP, Lin GH. 2008. Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology 196: 85-99. DOI: https://doi.org/10.1007/s11258-007-9336-3

Published
2024-03-30
How to Cite
Riaño Ospina, K., Muñoz Arreola, M. A., Mendoza Cuevas, I., Cuevas Guzmán, R., & Zuloaga-Aguilar, S. (2024). Effect of drought and defoliation in the growth of seedlings of the tropical dry forest in western Mexico. Botanical Sciences, 102(2), 390-400. https://doi.org/10.17129/botsci.3427
Section
ECOLOGY / ECOLOGÍA