Corolla micromorphology in 12 plant species with different pollination systems

  • Fernando Vélez-Esperilla Área de Botánica, Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, Badajoz https://orcid.org/0009-0008-2716-6912
  • Ángela Fondón-Aguilar Área de Botánica, Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, Badajoz http://orcid.org/0009-0004-7935-4510
  • Tomás Rodríguez-Riaño Área de Botánica, Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, Badajoz https://orcid.org/0000-0003-0260-1873
  • Ana Ortega-Olivencia Área de Botánica, Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, Badajoz http://orcid.org/0000-0002-5954-0226
keywords: mesophyll thickness, nectar theft, papillose cells, tabular cells, pollination systems, zoophylly

Abstract

Background: Floral microstructure, with multiple functions, is very important in pollination biology.

Questions: Are the expected general characteristics of corolla micromorphology fulfilled in the selected species with different pollination systems?

Studied species: Agave americana, Arbutus unedo, Aristolochia paucinervis, Cestrum nocturnum, Cytinus hypocistis subsp. macranthus, C. ruber, Dianthus lusitanus, Grevillea robusta, Musa x paradisiaca, Nicotiana glauca, Stellaria media and Teucrium fruticans.

Study site and dates: Southern Spain, 2017-2019.

Methods: Floral micromorphological characters were studied by light and scanning electron microscopy and analyzed using different statistical tests.

Results: The adaxial side of the corolla lobes in melittophilous, myrmecophilous, psychophilous and sapromyophilous species showed papillose cells, and the same was true of the sphingophilous species Cestrum nocturnum and hummingbird-pollinated Nicotiana glauca. In contrast, tabular cells were observed in the perching-pollinator ornithophilous species Grevillea robusta, the two studied chiropterophilous species, and autogamous Stellaria media. In addition, corolla mesophyll was thicker in chiropterophilous species. Furthermore, differences were detected in cell turgidity (in protogynous Aristolochia paucinervis) and in mesophyll thickness between male and female flowers (Cytinus).

Conclusions: Papillose cells were present in corollas in physical contact with pollinators, as expected, but also appeared in corollas of some other species without such contact. We recommend that studies of dichogamous and unisexual species include comparisons of corolla micromorphology between sexual states, as differences may exist in cell turgidity or mesophyll thickness. We also caution against the widespread view that certain types of pollinators do not mechanically interact with the epidermal surface of the corolla.

Downloads

Download data is not yet available.
Corolla micromorphology in 12 plant species with different pollination systems

References

Alpuente N, Miranda MÁ, Cursach J. 2023. Pollination biology of Aristolochia bianorii Sennen & Pau: promoting cross-pollination but assuring reproductive success in island ecosystems. Plant Biology 25: 296-307. DOI: https://doi.org/10.1111/plb.13497

Bailes E, Glover BJ. 2018. Intraspecific variation in the petal epidermal cell morphology of Vicia faba L. (Fabaceae). Flora 244-245: 29-36. DOI: https://doi.org/10.1016/j.flora.2018.06.005

Bräuer P, Neinhuis C, Voigt D. 2017. Attachment of honeybees and greenbottle flies to petal surfaces. Arthropod-Plant Interactions 11: 171-192. DOI: https://doi.org/10.1007/s11829-016-9478-0

Cao Y, Jana S, Bowen L, Tan X, Liu H, Rostami N, Brown J, Jakubovics NS, Chen J. 2019. Hierarchical Rose petal surfaces delay the early-stage bacterial biofilm growth. Langmuir 35: 14670-14680. DOI: 10.1021/acs.langmuir.9b02367

Christensen KI, Hansen HV. 1998. SEM-studies of epidermal patterns of petals in the angiosperms. Opera Botanica 135: 1-91.

Claessens J, Bacallado JJ, Bogarin D, Dedroog L, Heijungs R, Langelaan R, van Nieukerken EJ, van den Berg K, Gravendeel B. 2019. Pollination of Habenaria tridactylites on the Canary Islands. Nordic Journal of Botany 37: e02401. DOI: https://doi.org/10.1111/njb.02401

Coiro M, Lumaga MRB. 2018. Disentangling historical signal and pollinator selection on the micromorphology of flowers: an example from the floral epidermis of the Nymphaeaceae. Plant Biology 20: 902-915. DOI: https://doi.org/10.1111/plb.12850

Costa VBS, Pimentel RMM, Chagas MGS, Alves GD, Castro CC. 2017. Petal micromorphology and its relationship to pollination. Plant Biology 19: 115-122. DOI: https://doi.org/10.1111/plb.12523

de Vega C, Arista M, Ortiz PL, Herrera CM, Talavera S. 2009. The ant-pollination system of Cytinus hypocistis (Cytinaceae), a Mediterranean root holoparasite. Annals of Botany 103: 1065-1075. DOI: https://doi.org/10.1093/aob/mcp049

de Vega C, Herrera CM, Dötterl S. 2014. Floral volatiles play a key role in specialized ant pollination. Perspectives in Plant Ecology, Evolution and Systematics 16: 32-42. DOI: http://dx.doi.org/10.1016/j.ppees.2013.11.002

Del-Claro K, Rodriguez-Morales D, Calixto ES, Martins AS, Torezan-Silingardi HM. 2019. Ant pollination of Paepalanthus lundii (Eriocaulaceae) in Brazilian savanna. Annals of Botany 123: 1159-1165. DOI: https://doi.org/10.1093/aob/mcz021

Delnevo N, van Etten EJ, Clemente N, Fogu L, Pavarani E, Byrne M, Stock WD. 2020. Pollen adaptation to ant pollination: a case study from the Proteaceae. Annals of Botany 126: 377-386. DOI: https://doi.org/10.1093/aob/mcaa058

Domingos-Melo A, Nadia TL, Machado IC. 2017. Complex flowers and rare pollinators: Does ant pollination in Ditassa show a stable system in Asclepiadoideae (Apocynaceae)? Arthropod-Plant Interactions 11: 339-349. DOI: https://doi.org/10.1007/s11829-017-9499-3

Faegri K, van Der Pijl L. 1979. The principles of pollination ecology. Oxford: Pergamon. ISBN: 0-08-021338-3.

Funamoto D, Sugiura S. 2021. Relative importance of diurnal and nocturnal pollinators for reproduction in the early spring flowering shrub Stachyurus praecox (Stachyuraceae). Plant Species Biology 36: 94-101. DOI: https://doi.org/10.1111/1442-1984.12299

Gallego MJ. 2012a. Cestrum L. In: Talavera S, Andrés C, Arista M, Fernández Piedra MP, Gallego MJ, Ortiz PL, Romero Zarco C, Salgueiro FJ, Silvestre S, Quintanar A, eds. Flora iberica. Vol. XI. Madrid: Real Jardín Botánico de Madrid, CSIC, pp. 246-249. ISBN: 978-84-00-09415-7.

Gallego MJ. 2012b. Nicotiana L. In: Talavera S, Andrés C, Arista M, Fernández Piedra MP, Gallego MJ, Ortiz PL, Romero Zarco C, Salgueiro FJ, Silvestre S, Quintanar A, eds. Flora iberica. Vol. XI. Madrid: Real Jardín Botánico de Madrid, CSIC, pp. 240-246. ISBN: 978-84-00-09415-7.

Gómez JM, Zamora R. 1992. Pollination by ants: consequences of the quantitative effects on a mutualistic system. Oecologia 91: 410-418. DOI: https://doi.org/10.1007/BF00317631

Grases C, Ramírez N. 1998. Biología reproductiva de cinco especies ornitófilas en un fragmento de bosque caducifolio secundario en Venezuela. Revista de Biología Tropical 46: 1095-1108.

Haber WA, Frankie GW. 1989. A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21: 155-172. DOI: https://doi.org/10.2307/2388706

Heath RR, Landolt PJ, Dueben B, Lenczewski B. 1992. Identification of floral compounds of night-blooming Jessamine attractive to cabbage looper moths. Environmental Entomology 21: 854-859. DOI: https://doi.org/10.1093/ee/21.4.854

Johnson SD, Steiner KE. 2000. Generalization vs. specialization in plant pollination systems. Trends in Ecology & Evolution 15: 140-43. DOI: https://doi.org/10.1016/S0169-5347(99)01811-X

Kalinganire A, Harwood CE, Slee MU, Simons AJ. 2001. Pollination and fruit-set of Grevillea robusta in western Kenya. Austral Ecology 26: 637-648. DOI: https://doi.org/10.1046/j.1442-9993.2001.01139.x

Kay QON, Daoud HS, Stirton CH. 1981. Pigment distribution, light reflection and cell structure in petals. Botanical Journal of the Linnean Society 83: 57-84. DOI: https://doi.org/10.1111/j.1095-8339.1981.tb00129.x

Kraaij M, van der Kooi CJ. 2020. Surprising absence of association between flower surface microstructure and pollination system. Plant Biology 22: 177-183. DOI: https://doi.org/10.1111/plb.13071

Macedo KM, Tunes P, de Almeida Gonçalves L, Canaveze Y, Guimarães E, Rodrigues Machado S. 2023. Osmophores and petal surface traits in Bignonieae species. The Science of Nature 110:44. DOI: https://doi.org/10.1007/s00114-023-01873-6

Mangena P, Mokwala W. 2018. Pollination in plants. Zagreb: IntechOpen. ISBN: 978-1-78923-237-0.

Mast A, Olde PM, Makinson RO, Jones E, Kubes A, Miller ET, Weston PH. 2015. Paraphyly changes understanding of timing and tempo of diversification in subtribe Hakeinae (Proteaceae), a giant Australian plant radiation. American Journal of Botany 102: 1634-1646. DOI: https://doi.org/10.3732/ajb.1500195

Metcalfe CR, Chalk L. 1957. Anatomy of the dicotyledons. Oxford: Clarendon Press.

Moyroud E, Glover BJ. 2016. The physics of pollinator attraction. New Phytologist 216: 350-354. DOI: https://doi.org/10.1111/nph.14312

Nicolson SW, Wright GA. 2017. Plant-pollinator interactions and threats to pollination: perspectives from the flower to the landscape. Functional Ecology 31: 22-25. DOI: https://doi.org/10.1111/1365-2435.12810

Oelschlägel B, Gorb S, Wanke S, Neinhuis Ch. 2009. Structure and biomechanics of trapping flower trichomes and their role in the pollination biology of Aristolochia plants (Aristolochiaceae). New Phytologist 184: 988-1002. DOI: https://doi.org/10.1111/j.1469-8137.2009.03013.x

Ojeda I, Cronk QCB. 2008. Bird-pollinated flowers in an evolutionary and molecular context. Journal of Experimental Botany 59: 715-727. DOI: https://doi.org/10.1093/jxb/ern009

Ojeda I, Francisco-Ortega J, Cronk QCB. 2009. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity. Annals of Botany 104: 1099-1110. DOI: https://doi.org/10.1093/aob/mcp211

Ojeda I, Santos-Guerra A, Caujapé-Castells J, Jaén-Molina R, Marrero A, Cronk QCB. 2012. Comparative micromorphology of petals in Macaronesian Lotus (Leguminosae) reveals a loss of papillose conical cells during the evolution of bird pollination. International Journal of Plant Sciences 173: 365-374. DOI: https://doi.org/10.1086/664713

Ojeda I, Valido A, Fernández de Castro AG, Ortega-Olivencia A, Fuertes-Aguilar J, Carvalho AA, Santos-Guerra A. 2016. Pollinators shifts drive petal epidermal evolution on the Macaronesian Islands bird-flowered species. Biology Letters 12: 20160022. DOI: https://doi.org/10.1098/rsbl.2016.0022

Ollerton J, Watts S, Connerty S, Lock J, Parker L, Wilson I, Schueller SK, Nattero J, Cocucci AA, Izhaki I, Geerts S, Pauw A, Stout JC. 2012. Pollination ecology of the invasive tree tobacco Nicotiana glauca: comparisons across native and non-native ranges. Journal of Pollination Ecology 9: 85-95. DOI: https://doi.org/10.26786/1920-7603(2012)12

Opler PA. 1983. Nectar production in a tropical ecosystem. In: Bentley BL, Elias TS, eds. The Biology of Nectaries. New York: Columbia University Press, pp. 30-79. ISBN: 0-231-04446-1.

Orduff R. 1969. Reproductive biology in relations to systematics. Taxon 18: 121-244. DOI: https://doi.org/10.2307/1218671

Papiorek S, Junker RR, Lunau K. 2014. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers. Plos One 9: e112013. DOI: https://doi.org/10.1371/journal.pone.0112013

Peakall R, Beattie AJ. 1991. The genetic consequences of worker ant pollination in a self-compatible, clonal orchid. Evolution 45: 1837-1848. DOI: https://doi.org/10.1111/j.1558-5646.1991.tb02691.x

Pedrozo AR, Gomes LA, Uleda W. 2018. Feeding behavior and activity period of three Neotropical bat species (Chiroptera: Phyllostomidae) on Musa paradisiaca inflorescences (Zingiberales: Musaceae). Ilheringia, Série Zoologia 108: e2018022. DOI: https://doi.org/10.1590/1678-4766e2018022

Piwowarczyk R, Kasínska J. 2017. Petal epidermal micromorphology in holoparasitic Orobanchaceae and its significance for systematics and pollination ecology. Australian Systematics Botany 30: 48-63. DOI: https://doi.org/10.1071/SB16028

Proctor M, Yeo P, Lack A. 1996. The natural history of pollination. London: HarperCollins Publishers. ISBN: 000 219906 8.

Raghuram H, Singaravelan N, Nathan PT, Ravan KE, Marimuthu G. 2011. Foraging ecology of pteropodid bats: pollination and seed dispersal. In: Zupan JL, Mlakar SL, eds. Bats: Biology, Behavior and Conservation. Chapter 4. New York: Nova Science Publishers, Inc. ISBN 1612097499.

Rodríguez B, Siverio F, Siverio M, Barone R, Rodríguez A. 2015. Nectar and pollen of the invasive century plant Agave americana as a food resource for endemic birds. Bird Study 62: 232-242. DOI: https://doi.org/10.1080/00063657.2015.1015484

Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M. 2014. A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecology Letters 17: 388-400. DOI: https://doi.org/10.1111/ele.12224

Song JH, Roh H-S, Hong SP. 2020. Petal micromorphology and its systematic implications in Rosaceae tribe Spiraeeae. Brittonia 72: 111-122. DOI: https://doi.org/10.1007/s12228-020-09609-w

Stebbins GL. 1970. Adaptive radiation of reproductive characteristics in angiosperms. I: Pollination mechanisms. Annual Review of Ecology and Systematics 1: 307-326. DOI: https://doi.org/10.1146/annurev.es.01.110170.001515

Trejo-Salazar R, Scheinvar E, Eguiarte LE. 2015. ¿Quién poliniza realmente los agaves? Diversidad de visitantes florales en 3 especies de Agave (Agavoideae: Asparagaceae). Revista Mexicana de Biodiversidad 86: 358-369. DOI: https://doi.org/10.1016/j.rmb.2015.04.007

Vogel S, Martens J. 2000. A survey of the function of the lethal kettle traps of Arisaema (Araceae), with records of pollinating fungus gnats from Nepal. Botanical Journal of the Linnean Society 133: 61-100. DOI: https://doi.org/10.1006/bojl.1999.0317

Whitney HM, Bennett KMV, Dorling M, Sandbach L, Prince D, Chittka L, Glover BJ. 2011. Why do so many petals have conical epidermal cells? Annals of Botany 108: 609-616. DOI: https://doi.org/10.1093/aob/mcr065

Whitney HM, Chittka L, Bruce T, Glover BJ. 2009a. Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Current Biology 19: 1-6. DOI: https://doi.org/10.1016/j.cub.2009.04.051

Whitney HM, Federle W, Glover BJ. 2009b. Grip and slip. Mechanical interactions between insects and the epidermis of flowers and flower stalks. Communicative & Integrative Biology 2: 505-508. DOI: https://doi.org/10.4161/cib.2.6.9479

Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ. 2009c. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323: 130-133. DOI: https://doi.org/10.1126/science.1166256

Published
2024-02-26
How to Cite
Vélez-Esperilla, F., Fondón-Aguilar, Ángela, Rodríguez-Riaño, T., & Ortega-Olivencia, A. (2024). Corolla micromorphology in 12 plant species with different pollination systems. Botanical Sciences, 102(2), 464-481. https://doi.org/10.17129/botsci.3415
Section
STRUCTURAL BOTANY / BOTÁNICA ESTRUCTURAL