Chemical constituents of Salvia urica Epling, and their antihyperglycemic and antipropulsive effects

keywords: Specialized metabolites, terpenoids, Salvia genus, sage, antidiarrheal, antidiabetic, chromatographic methods, NMR analysis


Background: Salvia urica Epling is taxonomically and phylogenetically related to Salvia amarissima Ortega. The last species has pharmacological relevance by its contents of bioactive metabolites. Nowadays, Salvia urica has no reports about its chemical constituents and pharmacological activities.

Hypothesis: Does the close relationship between S. amarissima and S. urica led both species produce similar specialized metabolites? Does Salvia urica display similar pharmacological effects as S. amarissima?

Studied species: Salvia urica Epling (Lamiaceae).

Study site and dates: The plant material was collected in Teopisca, Chiapas, Mexico, in December 2021.

Methods: Metabolites of the acetone extract from Salvia urica were identified by GC-MS and HPLC-PDA profiling. In parallel, a phytochemical study was conducted, and the individual purified constituents, previously characterized by 1D NMR, were assayed on antihyperglycemic effect in diabetic mice and a charcoal-gum arabic-induced hyperperistalsis model in rats.

Results: The volatile compounds identified by GC-MS were alkanes, aromatics and triterpenes. The principal constituents of the acetone extract of Salvia urica were amarissinin A and 5,6-dihydroxy-7,3',4'-trimethoxyflavone, which were also quantified by HPLC-PDA. The extract and both metabolites isolated showed an antihyperglycemic effect on streptozotocin-induced diabetic mice, suggesting a possible synergic effect. In addition, the compound 5,6-dihydroxy-7,3',4'-trimethoxyflavone (IC50 = 0.79 mg/kg) showed a better antipropulsive effect than loperamide (IC50 = 16.6 mg/kg).

Conclusions: The phytochemical composition of an acetone extract of Salvia urica was determined by first time. The metabolites isolated from this plant support the phylogenetic relationship of S. urica with Salvia amarissima, and they showed antipropulsive and antihyperglycemic effects.


Download data is not yet available.

Author Biography

Elihú Bautista, CONAHCYT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí

Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas, Investigador Cátedra-CONACYT,

Chemical constituents of <em>Salvia urica</em> Epling, and their antihyperglycemic and antipropulsive effects


Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, Omari NE, Sheikh RA, Goh KW, Ming LC, Bouyahya A. 2022. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants 11: 1912. DOI:

Bautista E, Fragoso-Serrano M, Ortiz-Pastrana N, Toscano RA, Ortega A. 2016. Structural elucidation and evaluation of multidrug-resistance modulatory capability of amarissinins A–C, diterpenes derived from Salvia amarissima. Fitoterapia 114: 1-6. DOI:

Bautista E, Lozano-Gamboa S, Fragoso-Serrano M, Rivera-Chávez J, Salazar-Olivo LA. 2022. Jatrophenediol, a pseudoguaiane sesquiterpenoid from Jatropha dioica rhizomes. Tetrahedron Letters 104: 154040. DOI:

Calzada F, Arista R, Pérez H. 2010. Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal-gum acacia-induced hyperperistalsis in rats. Journal of Ethnopharmacology 128: 49-51. DOI:

Calzada F, Bautista E, Barbosa E, Salazar-Olivo LA, Alvidrez-Armendáriz E, Yepez-Mulia L. 2020. Antiprotozoal activity of secondary metabolites from Salvia circinata. Revista Brasileira de Farmacognosia 30: 593-596. DOI:

Chicago Natural History Museum. 1973. Fieldiana Botany. In: Chicago Natural History Museum 24: 300. USA.

Clebsch B. 2003. The new book of Salvias: Sages for every garden. Portland, USA: Timber Press. ISBN-13: 978-0-88192-913-3

Dirir AM, Daou M, Yousef AF, Yousef LF. 2022. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Reviews 21: 1049-1079. DOI:

Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Nuri-Ertas Y, Mirzaei S, Samarghandian S. 2022. Biomedicine & Pharmacotherapy 146: 112563. DOI:

Epling C. 1939 A revision of Salvia subgenus Calosphace. Repertorium Specierum Novarum Regni Vegetabilis. Dahlem, Berlin: Repertoriums.

Epling C. 1941 Supplementary notes on American Labiatae. II. Bulletin Torrey Botanical Club 68:552-568.

Flores-Bocanegra L, González-Andrade M, Bye R, Linares E, Mata R. 2017. α‑Glucosidase Inhibitors from Salvia circinata. Journal of Natural Products 80: 1584-1593. DOI:

Fragoso-Martínez I, Martínez-Gordillo M, Salazar GA, Sazatornil F, Jenks AA, García-Peña MR, Barrera-Aveleida G, Benítez-Vieyra S, Magallón S, Cornejo-Tenorio G, Granados-Mendoza C. 2018. Phylogeny of the Neotropical sages (Salvia subg. Calosphace; Lamiaceae) and insights into pollinator and area shifts. Plant Systematics and Evolution 304: 43-55,

García-Nava X, Fragoso-Serrano M, de Loera D, Cortezano-Arellano O, Calzada F, Bedolla-García BY. 2022. Amarisolide H and 15-epi-Amarisolide H, two diterpenoid glucosides from Salvia circinnata. Revista Brasileira de Farmacognosia 32: 993-999. DOI:

González-Gallegos JG, Fragoso-Martínez I, González-Adame G, Martínez-Ambriz AE, López-Enríquez IL. 2018. Salvia ozolotepecensis, S. patriciae and S. sirenis (Lamiaceae), three new species from Miahuatlán district, Oaxaca, Mexico. Phytotaxa 362: 143-159. DOI:

Harley RM, Atkins S, Budantsev AL, Cantino PD, Conn BJ, Grayer R, Harley MM, de Kok R, Krestovskaja T, Morales R, Paton AJ, Ryding O, Upson T. 2005. The Families and Genera of Vascular Plants. Taxon, 54: 574. DOI:

Jenks A, Kim SC. 2013. Medicinal plant complexes of Salvia subgenus Calosphace: An ethnobotanical study of new world sages. Journal of Ethnopharmacology 146: 214-224. DOI:

Lara-Cabrera SI, Perez-Garcia MdlL, Maya-Lastra CA, Montero-Castro JC, Godden GT, Cibrian-Jaramillo A, Fisher AE, Porter JM. 2021. Phylogenomics of Salvia L. subgenus Calosphace (Lamiaceae). Frontiers in Plant Science 12: 725900. DOI:

Mabhida SE, Dludla PV, Johnson R, Ndlovu M, Louw J, Opoku AR, Mosa RA. 2018. Protective effect of triterpenes against diabetes-induced -cell damage: An overview of in vitro and in vivo studies. Pharmacological Research 137: 179-192. DOI:

Martínez-Gordillo M, Bedolla-García B, Cornejo-Tenorio G, Fragoso-Martínez I, García-Peña MdR, González-Gallegos JG, Lara-Cabrera SI, Zamudio S. 2017. Lamiaceae de México. Botanical Sciences 95:780-806. DOI:

Ortega A, Pastor-Palacios G, Ortiz-Pastrana N, Ávila-Cabezas E, Toscano RA, Joseph-Nathan P, Morales-Jiménez J, Bautista E. 2020. Further galphimines from a new population of Galphimia glauca. Phytochemistry 169: 112180. DOI:

Ortega R, Valdés M, Alarcón-Aguilar FJ, Fortis-Barrera A, Barbosa E, Velázquez C, Calzada F. 2022. Antihyperglycemic Effects of Salvia polystachya Cav. and Its Terpenoids: Glucosidase and SGLT1 Inhibitors. Plants 11: 575.

Ortiz-Mendoza N, Aguirre-Hernández E, Fragoso-Martínez I, González-Trujano ME, Basurto-Peña FA, Martínez-Gordillo MJ. 2022. A review on the ethnopharmacology and phytochemistry of the Neotropical sages (Salvia subgenus Calosphace; Lamiaceae) emphasizing Mexican species. Frontiers in Pharmacology 13: 867-892. DOI:

Padilla-Gómez E. 2007. Estudio ecológico y etnobotánico de la vegetación del Municipio de San Pablo Etla, Oaxaca. Ms Thesis. Instituto Politécnico Nacional.

Sakagami Y, Murata H, Nakanishi T, Inatomi Y, Watabe K, Iinuma M, Tanaka T, Murata J, Lang FA. 2001. Inhibitory effect of plant extracts on production of Verotoxin by enterohemorrhagic Escherichia coli O157:H7. Journal of Health Sciencie 47: 437-477. DOI:

Santos FA, Frota JT, Arruda BR, de Melo TS, da Silva AA, Brito GAC, Chaves MH, Rao VS. 2012. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids in Health and Disease 11: 98. DOI:

SEMARNAT. [secretaria del Medio Ambiente y Recursos Naturales]. 1999. NOM-062-ZOO-1999: Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Ciudad de México: Diario Oficial de la Federación (miércoles 22 de agosto de 2001).

Sepúlveda-Cuellar L, Duque-Ortiz A, Yáñez-Espinosa L, Calzada F, Bautista E, Pastor-Palacios G, Bedolla García BY, Flores-Rivera J, Badano EI, Douterlungne D. 2021. Phylogenetic and Chemical Analyses of the Medicinal Plant Salvia circinnata: an Approach to Understand Metabolomics Differences. Revista Brasileira de Farmacognosia 31: 676-688. DOI:

Solares-Pascacio JI, Ceballos G, Calzada F, Barbosa E, Velazquez C. 2021. Antihyperglycemic and Lipid Profile Effects of Salvia amarissima Ortega on Streptozocin-Induced Type 2 Diabetic Mice. Molecules 26: 947. DOI:

Valdés M, Calzada F, Mendieta-Wejebe JE. 2019. Structure-activity relationship study of acyclic terpenes in blood glucose levels: potential α-glucosidase and sodium glucose cotransporter (SGLT-1) inhibitors. Molecules 24: 4020. DOI:

How to Cite
García-Nava, X., Valdes, M., Calzada, F., Bautista, E., Cortezano-Arellano, O., de Loera, D., Fragoso-Martínez, I., & Martínez-Gordillo, M. (2023). Chemical constituents of Salvia urica Epling, and their antihyperglycemic and antipropulsive effects. Botanical Sciences, 102(1), 162-171.