Approaches, potential, and challenges in the use of remote sensing to study mangrove and other tropical wetland forests

keywords: active sensors, passive sensors, prediction of community attributes, vegetation mapping, vegetation monitoring, vegetation structure


Tropical wetland forests are fragile ecosystems facing critical risks due to global warming and other anthropogenic threats. Hence, gathering accurate and reliable information on them is urgent. Although remote sensing has demonstrated great potential in studying terrestrial ecosystems, remote sensing-based wetland forest research is still in an early stage of development. Mapping wetland forests, particularly mangrove forests, was an initial goal of this approach and is a task that still faces methodological challenges. Initially based on aerial photography only, wetland forest mapping through remote sensing underwent explosive diversification after the launching of artificial satellites in the 1970s. Later, precision in wetland forest mapping increased with the combination of hyperspectral, multispectral, and high and very high resolution imagery. Accurate delimitation of wetland forest extent is also necessary to assess their temporal dynamics (losses, gains, and horizontal displacement). Despite the prevalence of mapping studies, current remote sensing-based research on wetland forests addresses new questions and novel aims, such as describing and predicting wetland forest attributes through mathematical modeling. Although this approach has made substantial progress in recent decades, modeling and predicting wetland forest attributes remain insufficiently explored fields of research. Combining active and passive sensors is a promising alternative to provide a more accurate picture of these communities’ attributes. In particular, LiDAR and radar-based technologies may help overcome difficulties encountered in older studies. In the future, we will witness conceptual and methodological progress that will enable us to surmount the remaining challenges.


Download data is not yet available.

Author Biographies

Daniel Chávez, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City

Ph.D. Student.

Jorge López-Portillo, Red de Ecología Funcional, Instituto de Ecología A.C., Xalapa, Veracruz


J. Alberto Gallardo-Cruz, Centro Transdisciplinar Universitario para la Sustentabilidad, Universidad Iberoamericana Ciudad de México, Mexico City


Jorge A. Meave, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City

Coordinador del Grupo de Ecología y Diversidad Vegetal, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias

Approaches, potential, and challenges in the use of remote sensing to study mangrove and other tropical wetland forests


Abdel-Hamid A, Dubovyk O, El-Magd IA, Menz G. 2018. Mapping mangroves extents on the Red Sea coastline in Egypt using polarimetric SAR and high resolution optical remote sensing data. Sustainability 10: 646. DOI:

Adam E, Mutanga O, Rugege D. 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18: 281-296. DOI:

Agráz-Hernández C, Noriega-Trejo R, López-Portillo J, Flores-Verdugo JF, Jiménez-Zacarías J. 2006. Guía de Campo. Identificación de los Manglares en México. Campeche: Universidad Autónoma de Campeche. ISBN: 968 5722-45-5

Al-Naimi N, Al-Ghouti MA, Balakrishnan P. 2016 Investigating chlorophyll and nitrogen levels of mangroves at Al-Khor, Qatar: an integrated chemical analysis and remote sensing approach. Environmental Monitoring and Assessment 188: 268. DOI:

Alongi DM. 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76: 1-13. DOI:

Alsaaideh B, Al-Hanbali A, Tateishi R, Kobayashi T, Hoan NT. 2013. Mangrove forests mapping in the southern part of Japan using Landsat ETM+ with DEM. Journal of Geographic Information System 5: 369-377. DOI:

Aplin P. 2004. Remote sensing: land cover. Progress in Physical Geography 28: 283-293. DOI:

Apostolopoulos DN, Giannikopoulos D, Ramfos A, Faulwetter S, Panagiotaras D, Nikolakopoulos KG, Avramidis P. 2023. Monitoring Kotychi Lagoon in western Peloponnese, Greece, using remote sensing techniques and environmental assessment. Journal of Marine Science and Engineering 11: 411. DOI:

Aschbacher J, Ofren R, Delsol JP, Suselo TB, Vibulsresth S, Charrupat T. 1995. An integrated comparative approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies: preliminary results. Hydrobiologia 295: 285-294. DOI:

Aslan A, Rahman AF, Warren MW, Robeson SM. 2016. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sensing of Environment 183: 65-81. DOI:

Asner GP, Hughes RF, Vitousek PM, Knapp DE, Kennedy-Bowdoin T, Boardman J, Martin RE, Eastwood M, Green RO. 2008. Invasive plants transform the three-dimensional structure of rain forests. Proceedings of the National Academy of Sciences of the United States of America 105: 4519-4523. DOI:

Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M. 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168: 1147-1160. DOI:

Baloloy AB, Blanco AC, Candido CG, Argamosa RJL, Dumalag JBLC, Dimapilis LLC, Paringit EC. 2018. Estimation of mangrove forest above ground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: Rapideye, Planetscope and Sentinel-2. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4: 29-36. DOI:

Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystems services. Ecological Monographs 81: 169-193. DOI:

Berlanga-Robles CA, Ruiz-Luna A. 2006. Evaluación de cambios en el paisaje y sus efectos sobre los humedales costeros del sistema estuarino de San Blas, Nayarit (México) por medio de análisis de imágenes Landsat. Ciencias Marinas 32: 523-538.

Berlanga-Robles CA, Ruiz-Luna A. 2007. Análisis de las tendencias de cambio del bosque de mangle del sistema lagunar Teacapán-Agua Brava, México. Una aproximación con el uso de imágenes de satélite Landsat. Universidad y Ciencia 23: 29-46.

Berlanga-Robles CA, Ruiz-Luna A. 2011. Integrating remote sensing techniques, Geographical Information Systems (GIS), and stochastic models for monitoring Land Use and Land Cover (LULC) changes in the Northern Coastal Region of Nayarit, Mexico. GIScience Remote Sensing 48: 245-263. DOI:

Biña RT, Jara RS, De Jesus BR, Lorenzo EN. 1978. Mangrove inventory of the Philippines using LANDSAT multispectral data and the IMAGE 100 system. NRMC Research Monograph 2: 1-8.

Blasco F, Carayon JL, Aizpuru M. 2001. World mangrove resources. ISME/GLOMIS Electronic Journal 1: 1-3.

Blasco F, Gauquelin T, Rasolofoharinoro M, Denis J, Aizpuru M, Caldairou V. 1998. Recent advances in mangrove studies using remote sensing data. Marine and Freshwater Research 49: 287-296. DOI:

Block S, González EJ, Gallardo-Cruz JA, Fernández A, Solórzano JV, Meave JA. 2016. Using Google Earth surface metrics to predict plant species richness in a complex landscape. Remote Sensing 8: 865. DOI:

Butera MK. 1983. Remote sensing of wetlands. IEEE Transactions on Geoscience and Remote Sensing 21: 383-392. DOI:

Charcape-Ravelo M. Moutarde F. 2005. Diversidad florística y conservación del Santuario Regional de Piura Manglares San Pedro de Vice-Sechura. Revista Peruana de Biología 12: 327-334.

Chatziantoniou A, Psomiadis E, Petropoulos GP. 2017. Co-orbital Sentinel 1 and 2 for LULC mapping with emphasis on wetlands in a Mediterranean setting based on machine learning. Remote Sensing 9: 1259. DOI:

Chinea JD. 2002. Teledetección de bosques tropicales. In: Guariguata MR, Kattan GH, eds. Ecología de Bosques Neotropicales. Cartago: Editorial Tecnológica. ISBN: 978-9968801119

Cho MS, Qi J. 2023. Characterization of the impacts of hydro-dams on wetland inundations in Southeast Asia. Science of The Total Environment 864: 160941. DOI:

Chuvieco E. 2020. Fundamentals of Satellite Remote Sensing: An Environmental Approach. Boca Raton: CRC Press. ISBN: 978-1138583832

Colwell JE. 1974. Vegetation canopy reflectance. Remote Sensing of Environment 3: 175-183. DOI:

Colwell RN. 1964. Aerial photography - a valuable sensor for the scientist. American Scientist 52: 17-49.

Coopman RE, Nguyen HT, Mencuccini M, Oliveira RS, Sack L, Lovelock CE, Ball MC. 2021. Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, Avicennia marina. New Phytologist 231: 1401-1414. DOI:

Couteron P, Pelissier R, Nicolini EA, Paget D. 2005. Predicting tropical forests stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. Journal of Applied Ecology 42: 1121-1128. DOI:

Dahdouh-Guebas F, Van Pottelbergh I, Kairo JG, Cannicci S, Koedam N. 2004. Human-impacted mangroves in Gazi (Kenya): predicting future vegetation based on retrospective remote sensing, social surveys, and tree distribution. Marine Ecology Progress Series 272: 77-92. DOI:

Dale PER, Chandica AL, Evans M. 1996. Using image subtraction and classification to evaluate change in sub-tropical intertidal wetlands. International Journal of Remote Sensing 17: 703-719. DOI:

Darmawan S, Takeuchi W, Vetrita Y, Winarso G, Wikantika K, Sari DK. 2014. Characterization of mangrove forest types based on ALOS-PALSAR in overall Indonesian archipelago. IOP Conference Series: Earth and Environmental Science 20: 1-8. DOI:

David LCG, Ballardo AH. 2015 Mapping mangrove forest from LiDAR data using object-based image analysis and support vector machine: the case of Calatagan, Batangas. 2015 International Conference on Humanoid Nanotechnology Information Technology Communication and Control Environment and Management, (HNICEM), pp. 1-5. DOI:

David LCG, Ballardo AH. 2016 Object-based use and land cover mapping from LiDAR data and orthophoto application of decision tree-based data selection for SVM classification. 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 2016, pp. 1-5. DOI:

Davies AB, Asner GP. 2014. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends in Ecology & Evolution 29: 681-691. DOI:

De Luca G, Silva JMN, Di Fazio S, Modica G. 2022. Integrated use of Sentinel-1 and Sentinel-2 data and open-source Machine Learning algorithms for land cover mapping in a Mediterranean region. European Journal of Remote Sensing 55: 52-72. DOI:

Debrot AO, Plas A, Boesono H, Prihantoko K, Baptist MJ, Mur, AJ, Tonneijck FH. 2022. Early increases in artisanal shore-based fisheries in a Nature-based Solutions mangrove rehabilitation Project on the north coast of Java. Estuarine, Coastal and Shelf Science 267: 107761. DOI:

Demuro M, Chisholm L. 2015 Assessment of Hyperion for characterizing mangrove communities. In: Proceedings of the 12th JPLAVIRIS Airborne Earth Science Workshop, pp. 18-23. Pasadena.

Dutrieux E, Denis J, Populus J. 1990. Application of SPOT data to a base-line ecological study of the Mahakam delta mangroves (East Kalimantan, Indonesia). Oceanologica Acta 13: 317-326.

Eitel DF. 1974. An overview of remote sensing for wetlands investigations. In: Shahrokhi F, ed. Remote Sensing of Earth Resources, Vol. 1. Nashville: University of Tennessee. pp. 179-192.

Einzmann K, Atzberger C, Pinnel N, Glas C, Böck S, Seitz R, Immitzer M. 2021. Early detection of spruce vitality loss with hyperspectral data: results of an experimental study in Bavaria, Germany. Remote Sensing of Environment 266: 112676. DOI:

FAO [Food and Agriculture Organization of the United Nations]. 1963. World Forest Inventory 1963. Rome: FAO.

FAO [Food and Agriculture Organization of the United Nations]. 2005a. Evaluación de los recursos forestales mundiales 2005: Estudio temático sobre manglares. México Perfil Nacional. Rome: FAO.

FAO [Food and Agriculture Organization of the United Nations]. 2005b. The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005. Rome: FAO.

Fatoyinbo TE. Armstrong AH. 2010. Remote characterization of biomass measurements: case study of mangrove forest. In: Momba M, Bux F, eds. Biomass. Rijeka: InTech. ISBN: 978-953-307-1138

Fatoyinbo TE, Simard M, Washington-Allen RA, Shugart HH. 2008. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique's mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Research 113: G02S06. DOI:

Fei SX, Shan CH, Hua GZ. 2011. Remote sensing of mangrove wetlands identification. Procedia Environmental Sciences 10: 2287-2293. DOI:

Flores-de Santiago F, Rodríguez-Sobreyra R, Álvarez-Sánchez LF, Valderrama-Landeros L, Amezcua F, Flores-Verdugo F. 2023. Understanding the natural expansion of white mangrove (Laguncularia racemosa) in an ephemeral inlet based on geomorphological analysis and remote sensing data. Journal of Environmental Management 338: 117820. DOI:

Flores Mata G, Jiménez López J, Madrigal Sánchez X, Moncayo Ruiz F, Takaki Takaki F. 1971. Memoria del Mapa de Tipos de Vegetación de la República Mexicana. Mexico City: Dirección de Agrología, Secretaría de Recursos Hidráulicos.

Flores Mejía MA, Aguirre Vallejo A, Flores Hernández M, Guardado Govea X. 2010. El impacto que produce el sector turismo en los manglares de las costas mexicanas. ContactoS 77: 33-38.

Foody GM. 2003. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development. International Journal of Remote Sensing 24: 4035-4046. DOI:

Foody GM, Cutler ME, McMorrow J, Pelz D, Tangki H, Boyd DS, Douglas I. 2002. Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography 10: 379-387. DOI:

Fröhlich C, Mettenleiter M. 2004. Terrestrial laser scanning-new perspectives in 3D surveying. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36: W2.

Gallardo-Cruz JA, Meave JA, González EJ, Lebrija-Trejos E, Romero-Romero MA, Pérez-García EA, Gallardo-Cruz R, Hernández-Stefanoni JL, Martorell C. 2012. Predicting tropical dry forest successional attributes from space: is the key hidden in image texture? Plos One 7: e30506. DOI:

Gao B. 1996. NDWI - A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58: 257-266. DOI:

Gao J. 1998. A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data. Journal of Remote Sensing 19: 1887-1899. DOI:

Gilman EL, Ellison J, Duke NC, Field C. 2008. Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany 89: 237-250. DOI:

Giri C. 2016. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remote Sensing 8: 783. DOI:

Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20: 154-159. DOI:

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing Environmental 202: 18-27. DOI:

Green EP, Clark CD, Mumby PJ, Edwards AJ, Ellis AC. 1998a. Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing 19: 935-956. DOI:

Green EP, Mumby PJ, Clark CD, Ellis AC. 1998b. The assessment of mangrove areas using high resolution multispectral airborne imagery. Journal of Coastal Research 14: 433-443.

Guerra Martínez V, Ochoa Gaona S. 2006. Forest and land use assessment from 1990 to the year 2000 in Pantanos de Centla Biosphere Reserve, Tabasco, Mexico. Investigaciones Geográficas 59: 7-25.

Guo M, Li J, Shen C, Xu J, Wu L. 2017. A review of wetland remote sensing. Sensors 17: 777. DOI:

Gupta K, Mukhopadhyay A, Giri S, Chanda A, Datta Majumdar S, Samanta S, Mitra D, Samal RN, Pattnaik AK, Hazra S. 2018. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 5: 1129-1139. DOI:

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG. 2013. High-resolution global maps of 21st-century forest cover change. Science 342: 850-853. DOI:

Haralik RM. 1979. Statistical and structural approaches to texture. Proceedings of the Institute of Electrical and Electronics Engineers 67: 786-804. DOI:

Haralik RM, Shanmugam K, Dinstein I. 1973. Textural features for image classification. Proceedings of the Institute of Electrical and Electronics Engineers Transactions on Systems. Man, and Cybernetics 3: 610-621. DOI:

Hardisky MA, Gross MF, Klemas V. 1986. Remote sensing of coastal wetlands. Bioscience 36: 453-459. DOI:

Heenkenda MK, Joyce KE, Maier SW, Bartolo R. 2014. Mangrove species identification: comparing WorldView-2 with aerial photographs. Remote Sensing 6: 6064-6088. DOI:

Held A, Ticehurst C, Lymburner L, Williams N. 2003. High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. International Journal of Remote Sensing 24: 2739-2759. DOI:

Hemati MA, Hasanlou M, Mahdianpari M, Mohammadimanesh F. 2023. Iranian wetland inventory map at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Environmental Monitoring and Assessment 195: 558. DOI:

Hernández Cornejo R, Koedam N, Ruiz Luna A, Troell M, Dahdouh-Guebas F. 2005. Remote sensing and ethnobotanical assessment of the mangrove forest changes in the Navachiste-San Ignacio-Macapule Lagoon complex, Sinaloa, Mexico. Ecology and Society 10: 16. DOI:

Herz R, Jaskow A. 1985. Remote sensing of mangrove areas on the Brazilian coast. Proceedings of the Coastal Zone 85, Baltimore, Maryland, USA. ISBN: 978-0872624733

Himes-Cornell A, Pendleton L, Atiyah P. 2018. Valuing ecosystem services from blue forests: a systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosystem Services 30: 36-48. DOI:

Hirano A, Madden M, Welch R. 2003. Hyperspectral image data for mapping wetland vegetation. Wetlands 23: 436-448. DOI:

Hogarth P. 2007. The Biology of Mangroves and Seagrasses. New York: Oxford University Press. DOI:

Hossain MS, Lin K, Hussain MZ. 2003. Remote sensing and GIS applications for suitable mangrove afforestation area selection in the coastal zone of Bangladesh. Geocarto International 18: 61-65. DOI:

Hu T, Zhang YY, Su Y, Zheng Y, Lin G, Guo Q. 2020. Mapping the global mangrove forest aboveground biomass using multisource remote sensing data. Remote Sensing 12: 1690. DOI:

Huete AR. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25: 295-309. DOI:

Huete AR, Liu HQ, van Leeuwen WJD. 1997. The use of vegetation indices in forested regions: issues of linearity and saturation. In: IGARSS'97. 1997 Proceedings. IEEE International Geoscience and Remote Sensing Symposium Remote Sensing-A Scientific Vision for Sustainable Development, Vol. 4, pp. 1966-1968. DOI:

Infante Mata D, Moreno-Casasola P, Madero-Vega C, Castillo-Campos G, Warner BG. 2011. Floristic composition and soil characteristics of tropical freshwater forested wetlands on the coastal plain of the Gulf of Mexico. Forest Ecology and Management 262: 1514-1531. DOI:

Ingram K, Knap E, Robinson JW. 1981. Change detection technique development for improved urbanized area delineation, technical memorandum CSCITM-81/6087. Maryland: Computer Sciences Corporation.

Islam SN. 2010. Threatened wetlands and ecologically sensitive ecosystems management in Bangladesh. Frontiers of Earth Science in China 4: 438-448. DOI:

Islam SN, Gnauck A, Voigt HJ, Eslamian S. 2014. Hydrological changes in mangrove ecosystems. In: Eslamian S, ed. Handbook of Engineering Hydrology. Boca Raton: CRC Press, pp. 369-390. DOI:

Islam S, Ma M. 2018. Geospatial monitoring of land surface temperature effects on vegetation dynamics in the southeastern region of Bangladesh from 2001 to 2016. ISPRS International Journal of Geo-Information 7: 486. DOI:

Jensen R, Mausel P, Dias N, Gonser R, Yang C, Everitt J, Fletcher R. 2007. Spectral analysis of coastal vegetation and land cover using AISA+ hyperspectral data. Geocarto International 22: 17-28. DOI:

Jia M, Liu M, Wang Z, Mao D, Ren C, Cui H. 2016. Evaluating the effectiveness of conservation on mangroves: a remote sensing-based comparison for two adjacent protected areas in Shenzen and Hong Kong, China. Remote Sensing 8: 627. DOI:

Jones TG, Glass L, Gandhi S, Ravaoarinorotsihoarana L, Carro A, Benson L, Ratsimba HR, Giri C, Randriamanatena D, Cripps G. 2016. Madagascar's mangroves: quantifying Nation-wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sensing 8: 106. DOI:

Kafy A-A, Saha M, Fattah MA, Rahman MT, Duti BM, Rahaman MT, Bakshi A, Kalaivani S, Rahaman SN, Sattar GS. 2023. Integrating forest cover change and carbon storage dynamics: leveraging Google Earth Engine and InVEST model to inform conservation in hilly regions. Ecological Indicators 152: 110374. DOI:

Kamal M, Phinn S. 2011. Hyperspectral data for mangrove species mapping: a comparison of pixel-based and object-based approach. Remote Sensing 3: 2222-2242. DOI:

Kathiresan K. Bingham BL. 2001. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40: 81-251. DOI:

Kayitakire F, Hamel C, Defourny P. 2006. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sensing of Environment 102: 390-401. DOI:

Koma Z, Zlinszky A, Bekő L, Burai P, Seijmonsbergen AC, Kissling WD. 2021. Quantifying 3D vegetation structure in wetlands using differently measured airborne laser scanning data. Ecological Indicators 127: 107752. DOI:

Koutsias N, Karteris M, Chuvieco E. 2000. The use of intensity-hue-saturation transformation of Landsat-5 Thematic Mapper data for burned land mapping. Photogrammetric Engineering Remote Sensing 66: 829-239.

Kovacs JM, Wang J, Blanco-Correa M. 2001. Mapping disturbances in a mangrove forest using multi-date Landsat TM imagery. Environmental Management 27: 763-776. DOI:

Kovacs JM, Wang J, Flores-Verdugo F. 2005. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuarine, Coastal and Shelf Science 62: 377-384. DOI:

Kovacs JM, Zhang C, Flores-Verdugo FJ. 2008. Mapping the condition of mangroves of the Mexican Pacific using C-band ENVISAT ASAR and Landsat optical data. Ciencias Marinas 34: 407-418. DOI:

Kovacs JM, King JML, Flores de Santiago F, Flores-Verdugo F. 2009. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach. Environmental Monitoring and Assessment 157: 137-149. DOI:

Kuenzer C, Bluemel A, Gebhardt S, Vo Quoc T, Dech S. 2011. Remote sensing of mangrove ecosystems: a review. Remote Sensing 3: 878-928. DOI:

Kumar L, Schmidt K, Dury S, Skidmore A. 2001. Imaging spectrometry and vegetation science. In: van der Meer F, de Jong S, eds. Imaging Spectrometry: Basic Principles and Prospective Applications. Dordrecht: Springer, pp. 111-155. DOI:

Kushwaha SPS, Dwivedi RS, Rao BRM. 2000. Evaluation of various digital image processing techniques for detection of coastal wetlands using ERS-1 SAR data. International Journal of Remote Sensing 21: 565-579. DOI:

Landgrave R, Moreno-Casasola P. 2012. Evaluación cuantitativa de la pérdida de humedales en México. Investigación Ambiental 4: 19-35.

Lee SY, Primavera JH, Dahdouh-Guebas F, McKee K, Bosire JO, Cannicci S, Diele K, Fromard F, Koedam N, Marchand C, Mendelssohn I, Mukherjee N, Record S. 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecology and Biogeography 23: 726-743. DOI:

Li Y, Bai J, Chen S, Chen B, Zhang L. 2023. Mapping seagrasses on the basis of Sentinel-2 images under tidal change. Marine Environmental Research 185: 105880. DOI:

Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, Haggrén H, Yu X, Kaartinen H, Jaakkola A, Guan F, Holopainen M, Vastaranta M. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115: 63-77. DOI:

Lin BB, Dushoff J. 2004. Mangrove filtration of anthropogenic nutrients in the Rio Coco Solo, Panama. Management Quality: An International Journal 15: 131-142. DOI:

López-Portillo J, Ezcurra E. 2002. Los manglares de México: una revisión. Madera y Bosques 8: 27-51. DOI:

López‐Portillo J, Ewers FW, Méndez‐Alonzo R, Paredes López CL, Angeles G, Alarcón Jiménez AL, Lara Domínguez AL, Torres Barrera MC. 2014. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species. American Journal of Botany 101: 1013-1022. DOI:

Lorenzo EN, de Jesús Jr BR, Jara RS. 1979. Assessment of mangrove forest deterioration in Zamboanga Peninsula, Philippines using Landsat MSS data, Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment 25-27 April, Michigan, Ann Arbor, Michigan: Environmental Research Institute of Michigan.

Lu D, Mausel P, Brondizio E, Moran E. 2004. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management 198: 149-167. DOI:

Lucas RM, Mitchell AL, Rosenqvist A, Proisy C, Melius A, Ticehurst C. 2007. The potential of L-band SAR for quantifying mangrove characteristics and change: case studies from the Tropics. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 245-264. DOI:

Mabwoga SO, Thukral AK. 2014. Characterization of change in the Harike wetland, a Ramsar site in India, using Landsat satellite data. SpringerPlus 3: 576. DOI:

MacDonald HC, Lewis AJ, Wing RS. 1971. Mapping and landform analysis of coastal regions with radar. GSA Bulletin 82: 345-358. DOI:;2

Macnae W. 1969. A general account of the fauna and flora of mangrove swamps and forests in the Indo-West Pacific region. Advances in Marine Biology 6: 73-103, 104a, 104b, 105-270. DOI:

Mahdavi S, Salehi B, Granger J, Amani M, Brisco B, Huang W. 2018. Remote sensing for wetland classification: a comprehensive review. GIScience & Remote Sensing 55: 623-658. DOI:

Mahdianpari M, Salehi B, Mohammadimanesh F, Brisco B, homayouni S, Gill E, DeLancey ER, Bourgeau-Chavez L. 2020. Big data for a big country: The first generation of Canadian wetland inventory map at a Spatial Resolution of 10-m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Canadian Journal of Remote Sensing 46: 15-33. DOI:

Mansaray LR, Huang J, Kamara AA. 2016. Mapping deforestation and urban expansion in Freetown, Sierra Leone, from pre- to post-war economic recovery. Environmental Monitoring and Assessment 188: 470. DOI:

Mao D, Tian Y, Wang Z, Jia M, Du J, Song C. 2021. Wetland changes in the Amur River Basin: differing trends and proximate causes on the Chinese and Russian sides. Journal of Environmental Management 280: 111670. DOI:

Margono BA, Bwangoy J-RB, Potapov PV, Hansen MC. 2014. Mapping wetlands in Indonesia using Landsat and PALSAR data-sets and derived topographical indices. Geo-spatial Information Science 17: 60-71. DOI:

Maryantika N, Lin C. 2017. Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, East Java using multi-temporal Landsat images. Information Processing in Agriculture 4: 321-332. DOI:

Mascaro J, Detto M, Asner GP, Muller-Landau HC. 2011. Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sensing of Environment 115: 3770-3774. DOI:

McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17: 1425-1432. DOI:

McGarigal K, Tagil S, Cushman SA. 2009. Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landscape Ecology 24: 433-450. DOI:

Mezaal MR, Pradhan B, Shafri HZM, Yusoff ZM. 2017. Automatic landslide detection using Dempster -Shafter theory from LiDAR-derived data and orthophotos. Geomatics, Natural Hazards and Risk 8: 1935-1954. DOI:

Moreno-Casasola P, López Rosas H, Infante Mata D, Peralta LA, Travieso-Bello AC, Warner BG. 2009. Environmental and anthropogenic factors associated with coastal wetland differentiation in La Mancha, Veracruz, Mexico. Plant Ecology 200: 37-52. DOI:

Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q. 2011. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment 115: 1145-1161. DOI:

Nagendra H, Rocchini D. 2008. High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail. Biodiversity and Conservation 17: 3431-3442. DOI:

Nasiri V, Deljouei A, Moradi F, Sadeghi SMM, Borz SA. 2022. Land Use and Land Cover mapping using Sentinel-2, Landsat-8 satellite images, and Google Earth Engine: a comparison of two composition methods. Remote Sensing 14: 1977. DOI:

Navulur K. 2007. Multispectral Image Analysis Using the Object-Oriented Paradigm. Boca Raton: CRC Press. DOI:

Nguyen H-H, Nguyen TTH. 2021. Above-ground biomass estimation models of mangrove forests based on remote sensing and field-surveyed data: implications for C-PFES implementation in Quang Ninh Province, Vietnam. Regional Studies in Marine Science 48: 101985. DOI:

Nguyen H-H, Vu HD, Röder A. 2021. Estimation of above-ground mangrove biomass using Landsat-8 data-derived vegetation indices: a case study in Quang Ninh Province. Vietnam. Forest and Society 5: 506-525. DOI:

Odum WE. Heald EJ. 1975. The detritus-based food web of an estuarine mangrove community. In: Cronin LE, ed. International Estuarine Research Conference. New York: Academic Press, pp. 265-286. ISBN: 9780323142700

Owers CJ, Rogers K, Woodroffe CD. 2018. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation. Estuarine, Coastal and Shelf Science 204: 164-176. DOI:

Pada AV, Silapan J, Cabanlit MA, Campomanes F, Garcia JJ. 2016. Mangrove forest cover extraction of the coastal areas of Negros Occidental, Western Visayas, Philippines using LiDAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1. DOI:

Pan W-H, Chen J-J, Wang Y. 2020. Analysis of spatio-temporal dynamical change and landscape characteristics of mangroves and Spartina alterniflora in Fujian based on satellite imageries from 1999 to 2018. Journal of Ecology and Rural Environment 36: 1428-1436. DOI:

Pan X, Wang Z, Gao Y, Dang X, Han Y. 2022. Detailed an automated classification of land use/land cover using machine learning algorithms in Google Earth Engine. Geocarto International 37: 5415-5432. DOI:

Pandey PC, Anand A, Srivastava PK. 2019. Spatial distribution of mangrove forest species and biomass assessment using field inventory and earth observation hyperspectral data. Biodiversity and Conservation 28: 2143-2162. DOI:

Pasqualini V, Iltis J, Dessay N, Lointier M, Guelorget O, Polidori L. 1999. Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-C radar data. Hydrobiologia 413: 127-133. DOI:

Pereira FRS, Kampel M, Soares MLG, Estrada GCD, Bentz C, Vincent G. 2018. Reducing uncertainty in mapping of mangrove aboveground biomass using airborne discrete LiDAR data. Remote Sensing 10: 637. DOI:

Pham H-T, Nguyen H-Q, Le K-P, Tran T-P, Ha N-T. 2023. Automated mapping of wetland ecosystems: a study using Google Earth Engine and machine learning for lotus mapping in Central Vietnam. Water 15: 854. DOI:

Ploton P, Pélissier R, Proisy C, Flavenot T, Barbier N, Rai SN, Couteron P. 2012. Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecological Applications 22: 993-1003. DOI:

Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Nam VN, Ong JE, Primavera JH, Salmo III SG, Sanciangco JC, Sukardjo S, Wang Y, Yong JWH. 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. Plos One 5: e10095. DOI:

Proisy C, Couteron P, Fromard F. 2007. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based Textural Ordination of IKONOS images. Remote Sensing of Environment 109: 379-392. DOI:

Proisy C, Mougin E, Fromard F, Karam MA. 2000. Interpretation of polarimetric Radar signatures of mangrove forests. Remote Sensing of Environment 71: 56-66. DOI:

Putut Ash Shidiq I, Wibowo A, Kusratmoko E, Indratmoko S, Ardhianto R, Prasetyo Nugroho B. 2017. Urban forest topographical mapping using UAV LIDAR. IOP Conference Series: Earth and Environmental Science 98: 012034. DOI:

Rahaman SN, Shermin N. 2022. Identifying the effect of monsoon floods on vegetation and land surface temperature by using Google Earth Engine. Urban Climate 43: 101162. DOI:

Ramsey III EW, Jensen JR. 1996. Remote sensing of mangrove wetlands: relating canopy spectra to site-specific data. Photogrammetric Engineering Remote Sensing 62: 939-948.

Ramsey III EW, Nelson GA, Sapkota SK. 1998. Classifying coastal resources by integrating optical and radar imagery and color infrared photography. Mangroves and Salt Marshes 2: 109-119. DOI:

Rasolofoharinoro M, Blasco F, Bellan MF, Aizpuru M, Gauquelin T, Denis J. 1998. A remote sensing-based methodology for mangrove studies in Madagascar. International Journal of Remote Sensing 19: 1873-1886. DOI:

Ren H, Wu X, Ning T, Huang G, Wang J, Jian S, Lu H. 2011. Wetland changes and mangrove restoration planning in Shenzhen Bay, Southern China. Landscape and Ecological Engineering 7: 241-250. DOI:

Roy S, Mahapatra M, Chakraborty A. 2019. Mapping and monitoring of mangrove along the Odisha coast based on remote sensing and GIS techniques. Modeling Earth Systems and Environment 5: 217-226. DOI:

Saenger P, Hegerl EJ, Davie JD. 1983. Global status of mangrove ecosystems. The Environmentalist 3: 7-79.

Saito H, Bellan MF, Al-Habshi A, Aizpuru M, Blasco F. 2003. Mangrove research and coastal ecosystem studies with SPOT-4 HRVIR and TERRA ASTER in the Arabian Gulf. International Journal of Remote Sensing 24: 4073-4092. DOI:

Sandilyan S, Kathiresan K. 2012. Mangrove conservation: a global perspective. Biodiversity and Conservation 21: 3523-3542. DOI:

Satyanarayana B, Koedam N, De Smet K, Di Nitto D, Bauwens M, Jayatissa LP, Cannicci S, Dahdouh-Guebas F. 2011. Long-term mangrove forests development in Sri Lanka: early predictions evaluated against outcomes using VHR remote sensing and VHR ground-truth data. Marine Ecology Progress Series 443: 51-63. DOI:

Schowengerdt RA. 2007. Remote Sensing. Models and Methods for Image Processing. Burlington: Academic Press. ISBN: 9780080480589

Semeniuk V. 1980. Mangrove zonation along an eroding coastline in King Sound, North-Western Australia. Journal of Ecology 68: 789-812. DOI:

Seppelt R, Dormann CF, Eppink FV, Lautenbach S, Schmidt S. 2011. A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. Journal of Applied Ecology 48: 630-636. DOI:

Shafi A, Chen S, Waleed M, Sajjad M. 2023. Leveraging machine learning and remote sensing to monitor long-term spatial-temporal wetland changes: Towards a national RAMSAR inventory in Pakistan. Applied Geography 151: 102868. DOI:

Shahzad N, Ahmad SR, Ashraf S. 2017. An assessment of pan-sharpening algorithms for mapping mangrove ecosystems: a hybrid approach. International Journal of Remote Sensing 38: 1579-1599. DOI:

Sharma S. 2018. Introductory Chapter: Mangrove ecosystem research trends - where has the focus been so far. In: Sharma S, ed. Mangrove Ecosystem Ecology and Function. London: IntechOpen, . 3-13. DOI:

Shaw G. Burke HK. 2003. Spectral imaging for remote sensing. Lincoln Laboratory Journal 14: 3-28.

Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castañeda-Moya E, Twilley RR. 2008. A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: application to Ciénaga Grande de Santa Marta, Colombia. Remote Sensing of Environment 112: 2131-2144. DOI:

Simard M, Zhang K, Rivera-Monroy VH, Ross, MS, Ruiz PL, Castañeda-Moya E, Twilley RR, Rodriguez E. 2006. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering and Remote Sensing 72: 299-311. DOI:

Singh A. 1989. Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing 10: 989-1003. DOI:

Soares MLG. 2009. A conceptual model for the responses of mangrove forests to sea level rise. Journal of Coastal Research 56: 267-271.

Solórzano JV, Gallardo-Cruz JA, González EJ, Peralta-Carreta C, Hernández-Gómez M, Fernández-Montes de Oca A, Cervantes-Jiménez LG. 2018. Contrasting the potential of Fourier transformed ordination and gray level co-occurrence matrix textures to model a tropical swamp forest’s structural and diversity attributes. Journal of Applied Remote Sensing 12: 036006. DOI:

Solórzano JV, Meave JA, Gallardo-Cruz JA, González EJ, Hernández-Stefanoni JL. 2017. Predicting old-growth tropical forest attributes from very high resolution (VHR)-derived surface metrics. International Journal of Remote Sensing 38: 492-513. DOI:

Song L, Liu S, Kustas WP, Zhou J, Xu Z, Xia T, Li M. 2016. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology 230-231: 8-19. DOI:

Spalding M, Kainuma M, Collins L. 2010. World Atlas of Mangroves. London: ITTO, ISME, FAO, UNEP-WCMC, UNESCO-MAB and UNU-INWEH. Earthscan Publishers Ltd. DOI:

Steenvoorden J, Bartholomeus H, Limpens J. 2023. Less is more: Optimizing vegetation mapping in peatlands using unmanned aerial vehicles (UAVs). International Journal of Applied Earth Observation and Geoinformation 117: 103220. DOI:

Steinbach S, Hentschel E, Hentze K, Rienow A, Umulisa V, Zwart SJ, Nelson A. 2023. Automatization and evaluation of a remote sensing-based indicator for wetland health assessment in East Africa on national and local scales. Ecological Informatics 75: 102032. DOI:

Strahler AH, Woodcock CE, Smith JA. 1986. On the nature of models in remote sensing. Remote Sensing of Environment 20: 121-139. DOI:

Sulong I, Mohd-Lokman H, Mohd-Tarmizi K, Ismail A. 2002. Mangrove mapping using Landsat imagery and aerial photographs: Kemaman District, Terengganu, Malaysia. Environment, Development and Sustainability 4: 135-152. DOI:

Tassi A. Vizzari M. 2020. Object-oriented LULC classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sensing 12: 3776. DOI:

Tomlinson PB. 1986. The Botany of Mangroves. Cambridge: Cambridge University Press. ISBN: 0-521-25567-8

Thom BG. 1967 Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. Journal of Ecology 55: 301-343. DOI:

Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A, Simard M. 2017. Distribution and drivers of global mangrove forest change, 1996-2010. Plos One 12: e0179302. DOI:

Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. 2003. Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution 18: 306-314. DOI:

Valderrama-Landeros L, Flores-de-Santiago F, Kovacs JM, Flores-Verdugo F. 2018. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environmental Monitoring and Assessment 190: 23. DOI:

Valderrama L, Troche C, Rodríguez MT, Márquez D, Vázquez B, Velázquez S, Vázquez A, Cruz MI, Ressl R. 2014. Evaluation of mangrove cover changes in Mexico during the 1970 – 2005 period. Wetlands 34: 747-758. DOI:

Valiela I, Bowen JL, York JK. 2001. Mangrove forests: one of the world's threatened major tropical environments. BioScience 51: 807-815. DOI:[0807:MFOOTW]2.0.CO;2

Valtonen A, Korkiatupa E, Holm S, Malinga GM, Nakadai R. 2021. Remotely sensed vegetation greening along a restoration gradient of a tropical forest, Kibale National Park, Uganda. Land Degradation Development 32: 5166-5177. DOI:

van der Meer F, De Jong S, Bakker W. 2001. Imaging spectrometry: basic analytical techniques. In: van der Meer F, de Jong S, eds. Imaging Spectrometry: Basic Principles and Prospective Applications. Dordrecht: Springer, pp. 17-61. DOI:

van Hespen R, Hu Z, Borsje B, De Dominicis M, Friess DA, Jevrejeva S, Kleinhans MG, Maza M, van Bijsterveldt CEJ, Van der Stocken T, van Wesenbeeck B, Xie D, Bouma TJ. 2023. Mangrove forest as a nature-based solution for coastal flood protection: biophysical and ecological considerations. Water Science and Engineering 16: 1-13. DOI:

Viani RAG, Holl KD, Padovezi A, Strassburg BBN, Farah FT, Garcia LC, Chaves RB, Rodrigues RR, Brancalion PHS. 2017. Protocol for monitoring tropical forest restoration: perspectives from the Atlantic forest restoration pact in Brazil. Tropical Conservation Science 10: 1-8. DOI:

Vázquez-Yanes C. 1971. La vegetación de la Laguna de Mandinga, Veracruz. Anales del Instituto de Biología, Universidad Nacional Autónoma de México 42: 49-94.

Waleed M, Sajjad M, Shazil MS, Tariq M, Alam MT. 2023. Machine learning-based spatial-temporal assessment and change transition analysis of wetlands: an application of Google Earth Engine in Sylhet, Bangladesh (1985-2022). Ecological Informatics 75: 102075. DOI:

Wang K, Franklin SE, Guo X, Cattet M. 2010. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors 10: 9647-9667. DOI:

Wang L, Jia M, Yin D, Tian J. 2019. A review of remote sensing for mangrove forests: 1956-2018. Remote Sensing of Environment 231: 111223. DOI:

Wang L, Sousa WP. 2009. Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance. International Journal of Remote Sensing 30: 1267-1281. DOI:

Wang L, Sousa WP, Gong P, Biging GS. 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment 91: 432-440. DOI:

Wannasiri W, Nagai M, Honda K, Santitamnont P, Miphokasap P. 2013. Extraction of mangrove biophysical parameters using airborne LiDAR. Remote Sensing 5: 1787-1808. DOI:

West RC. 1956. Mangrove swamps of the Pacific Coast of Colombia. Annals of the Association of American Geographers 46: 98-121. DOI:

Whittaker RH, Likens GE. 1973. The biosphere and man. In: Lieth H, Whittaker RH, eds. Primary Productivity of the Biosphere. Ecological Studies, vol 14, Berlin, Heidelberg: Springer-Verlag, pp. 305-328. DOI:

Woodcock CE, Strahler AH. 1987. The factor of scale in remote sensing. Remote Sensing of Environment 21: 311-332. DOI:

Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE, Allen RG, Anderson MC, Belward AS, Cohen WB, Dwyer J, Erb A, Gao F, Griffiths P, Helder D, Hermosilla T, Hipple JD, Hostert P, Hughes MJ, Huntington J, Johnson DM, Kennedy R, Kilic A, Li Z, Lymburner L, McCorkel J, Pahlevan N, Scambos TA, Schaaf C, Schott JR, Sheng Y, Storey J, Vermote E, Vogelmann J, White JC, Wynne RH, Zhu Z. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment 225: 127-147. DOI:

Xie Y, Sha Z, Yu M. 2008. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology 1: 9-23. DOI:

Yang L, Driscol J, Sarigai S, Wu Q, Chen H, Lippitt CD. 2022. Google Earth Engine and artificial intelligence (AI): a comprehensive review. Remote Sensing 14: 3253. DOI:

Yang C, Everitt JH, Fletcher RS, Jensen RR, Mausel PW. 2009. Evaluating AISA + Hyperspectral imagery for mapping black mangrove along the South Texas Gulf Coast. Photogrammetric Engineering Remote Sensing 75: 425-435. DOI:

Yevugah LL, Osei Jr EM, Ayer J, Osei J. 2017. Spatial mapping of carbon stock in riverine mangroves along Amanzule River in the Ellembelle District of Ghana. Earth Science Research 6: 120-128. DOI:

Zhang C, Kovacs JM, Liu Y, Flores-Verdugo F, Flores-de-Santiago F. 2014. Separating mangrove species and conditions using laboratory hyperspectral data: a case study of a degraded mangrove forest to the Mexican Pacific. Remote Sensing 6: 11673-11688. DOI:

Zhang Z, Fan Y, Jiao Z. 2023. Wetland ecological index and assessment of spatial-temporal changes of wetland ecological integrity. Science of The Total Environment 862: 160741. DOI:

Zhou X-X, Cai L-L, Fu M-P, Hong L-W, Shen Y-J, Li QQ. 2016. Progress in the studies of vivipary in mangrove plants. Chinese Journal of Plant Ecology 40: 1328-1343. DOI:

How to Cite
Chávez, D., López-Portillo, J., Gallardo-Cruz, J. A., & Meave, J. A. (2023). Approaches, potential, and challenges in the use of remote sensing to study mangrove and other tropical wetland forests. Botanical Sciences, 102(1), 1-25.