Automated monitoring of pollen quality in Douglas fir using digital images: applications for handling and storage

keywords: imaging, macros, pollen conservation, pollen germinability, Pseudotsuga menziesii, tetrazolium, viability

Abstract

Background: Conservation and breeding programs for forest species require efficient pollen quality monitoring strategies to maximize collection, storage and pollination efforts.

Question: Can the ImageJ image analysis software be implemented to efficiently monitor pollen viability and germinability for quality testing?

Studied species: Pseudotsuga menziesii (Mirb.) Franco

Methods: Tetrazolium staining and germination on 10 % Brewback media was used to test Douglas-fir pollen quality. Two macros for automated counting were developed with ImageJ free software using digitized microscopic images, and were tested to evaluate provenances, germination in different media, dehydration/rehydration and freeze-storage treatments, and finally to compare pollen quality between mature trees and GA-induced strobili from juvenile trees.

Results: Automated monitoring of pollen quality was feasible because the software suitably distinguishes viable from non-viable pollen grains due to differential tetrazolium staining that translates into pixel density, whereas germinability was assayed based on pollen size and circularity. This tool was used to guide the selection of appropriate pollen handling conditions and compare pollen production in adult and GA-induced juvenile trees. Pollen flash-freezing and storage at -80 °C showed recovery between 74 and 98 % of its initial germinability after rehydration; however, viability detected by tetrazolium is reduced, suggesting that handling and storage affect the reliability of the test.

Conclusions: The flexibility of the Fiji software allowed the development of an efficient and accurate macro for monitoring P. menziesii pollen quality, reducing invested time and effort involved, which supports future research on its conservation physiology and its successful application for germplasm production.

Downloads

Download data is not yet available.

Author Biographies

Cassandra Rubio-Plascencia, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City

Undergraduate student 

Mara Lizbeth Sánchez-Salgado, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City

Undergraduate student

Florencia García-Campusano, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City

Head researcher at the Institute, in the Plantations and agroforestry systems program

Liliana Muñoz-Gutierrez, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City

Head researcher at the Institute, in the Plantations and agroforestry systems program

Automated monitoring of pollen quality in Douglas fir using digital images: applications for handling and storage

References

Araújo de Oliveira AC, da Silva Lédo A, Polek M, Krueger R, Shepherd A, Volk GM. 2021. Optimization of in vitro germination and cryopreservation conditions for preserving date palm pollen in the USDA National Plant Germplasm System. Plant Cell, Tissue and Organ Culture 144: 223-232. DOI: https://doi.org/10.1007/s11240-020-01907-1

Ayenan MAT, Danquah A, Ampomah-Dwamena C, Hanson P, Asante IK, Danquah EY. 2020. Optimizing pollencounter for high throughput phenotyping of pollen quality in tomatoes. MethodsX 7: 100977. DOI: https://doi.org/10.1016/j.mex.2020.100977

Binder W D, Ballantyne D J. 1975. The respiration and fertility of Pseudotsuga menziesii (Douglas fir) pollen. Canadian Journal of Botany 53: 819-823. DOI: https://doi.org/10.1139/b75-099

Castillo S E, Tovar J C, Shamin A, Gutierrez J, Pearson P, Gehan M A. 2022. A protocol for Chenopodium quinoa pollen germination. Plant Methods 18: 65. DOI: https://doi.org/10.1186/s13007-022-00900-3

Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M. 2007. Gibberellin regulates pollen viability and pollen tube growth in rice. The Plant Cell 19: 3876-3888. DOI: https://doi.org/10.1105/tpc.107.054759

Connor KF, Towill LE. 1993. Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica 68:77-84. DOI: https://doi.org/10.1007/BF00024157

Conner PJ. 2011. Optimization of in vitro pecan pollen germination. American Society of Horticultural Science 46: 571-576. DOI: https://doi.org/10.21273/HORTSCI.46.4.571

Cook SA, Stanley RG. 1960. Tetrazolium chloride as an indicator of pine pollen germinability. Silvae Genetica 9: 121-148.

Costa CM, Yang S. 2009. Counting pollen grains using readily available, free image processing and analysis software. Annals of Botany 104: 1005-1010. DOI: https://doi.org/10.1093/aob/mcp186

Crain BA, Cregg BM. 2018. Regulation and management of cone induction in temperate conifers. Forest Science 64: 82-101.

Dinato NB, Santos IRI, Leonardecz E, Burson BL, Quarín CL, de Paula AF, Fávero AP. 2018. Storage of bahiagrass pollen at different temperatures. Crop Science 58: 2391-2398. DOI: https://doi.org/10.2135/cropsci2018.03.0164

Dumont-BéBoux N, Von Aderkas P. 1997. In vitro pollen tube growth in Douglas-fir. Canadian Journal of Forest Research 27: 674-678. DOI: https://doi.org/10.1139/x96-219?journalCode=cjfr

El-Kassaby YA, Ritland K. 1986. The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir seed orchard. Silvae Genetica 35: 240-4.

El-Kassaby YA, Reynolds S. 1990. Reproductive phenology, parental balance, and supplemental mass pollination in a Sitka-spruce seed-orchard. Forest Ecology and Management 31: 45-54. DOI: https://doi.org/10.1016/0378-1127(90)90110-W

Eriksson U, Jansson G, Almqvist C. 1998. Seed and pollen production after stem injections of gibberellin A4/7 in field-grown seed orchards of Pinus sylvestris. Canadian Journal of Forest Research 28: 340-346. DOI: https://doi.org/10.1139/x97-219

Excel (12.0). 2007. Microsoft. Web site. https://www.microsoft.com/es-mx/microsoft-365/excel?rtc=1 (accessed April 5, 2022)

Gugger P F, González-Rodríguez A, Rodríguez-Correa H, Sugita S, Cavender-Bares J. 2011. Southward Pleistocene migration of Douglas-fir into Mexico: phylogeography, ecological niche modeling, and conservation of ‘rear edge’ populations. New Phytologist 189: 1185-1199. DOI: https://doi.org/10.1111/j.1469-8137.2010.03559.x

Hermann RK, Lavender DP. 1999. Douglas-fir planted forests. New Forests 17: 53-70. DOI: https://doi.org/10.1023/A:1006581028080

Ho RH. 1991. Promotion of cone production in potted black-spruce grafts, using gibberellins, heat-treatment and root-pruning. Forest Ecology and Management 40: 261-269. DOI: https://doi.org/10.1016/0378-1127(91)90044-V

Ho R, Rouse GE. 1970. Pollen germination of Larix sibirica (Siberian larch) in vitro. Canadian Journal of Botany 48: 213-215. DOI: https://doi.org/10.1139/b70-032

Kadri K, Boaaga K, Makhlouf S. 2017. Physiological characterization of some male pollinators in Tunisia and study of the effect of conditioning temperature on the viability and germination of pollen. Journal of New Sciences 48: 2907-2920.

Kears CA, Inouye DW. 1993. Pollen. In: Inouye DW. ed, Technique for pollination biologists. Niwot, CO: University Press of Colorado, pp. 77-124. ISBN: 0-87081-281-5

Kong L, von Aderkas P, Zaharia LI. 2018. Effects of stem-injected gibberellins and 6-benzylaminopurine on phytohormone profiles and cone yield in two lodgepole pine genotypes. Trees 32: 765-775. DOI: https://doi.org/10.1007/s00468-018-1670-7

Kumar G, Dwivedi K. 2014. Gibberellic acid-mediated male sterility during gametogenesis of Brassica campestris L. Chromosome Botany 9: 59-63. DOI: https://doi.org/10.3199/iscb.9.59

Lee WY, Lee JS, Lee JH, Noh EW, Park EJ. 2011. Enhanced seed production and metabolic alterations in Larix leptolepis by girdling. Forest Ecology and Management 261: 1957-1961. DOI: https://doi.org/10.1016/j.foreco.2011.02.022

Li Y, Li X, Zhao MH, Pang ZY, Wei JT, Tigabu M, Zhao XY. 2021. An overview of the practices and management methods for enhancing seed production in conifer plantations for commercial use. Horticulturae 7: 252. DOI: https://doi.org/10.3390/horticulturae7080252

López-Upton J, Valdez-Lazalde JR, Ventura-Ríos A, Vargas-Hernández JJ, Guerra-de-la-Cruz V. 2015. Extinction risk of Pseudotsuga menziesii populations in the central region of Mexico: An AHP analysis. Forests 6: 1598-1612. DOI: https://doi.org/10.3390/f6051598

Muñoz-Gutiérrez L, Vargas-Hernández JJ, López-Upton J, Gutierrez-Rangel N. 2010. Induction of reproductives structures in Pseudotsuga menziesii. Agrociencia 44: 835-847.

Muñoz-Gutiérrez L, Vargas-Hernández JJ, Santos-Posadas HM, López-Upton J. 2012. Effect of GA4/7 and stem girdling on shoot growth in Pseudotsuga menziesii (Mirb.) Franco. Revista Fitotecnia Mexicana 35: 239-249.

Owens JN, Morris SJ. 1990. Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. I. Pollen tube and archegonial development. American Journal of Botany 77: 433-445. DOI: https://doi.org/10.1002/j.1537-2197.1990.tb13574.x

Redmond MD, Davis TS, Ferrenberg S, Wion AP. 2019. Resource allocation trade-offs in a mast-seeding conifer: piñon pine prioritizes reproduction over defence. AoB Plants 11: plz070. DOI: https://doi.org/10.1093/aobpla/plz070

Rodriguez-Riano T, Dafni A. 2000. A new procedure to asses pollen viability. Sexual Plant Reproduction 12: 241-244. DOI: https://doi.org/10.1007/s004970050008

Roland CA, Schmidt JH, Johnstone JF. 2014. Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests. Oecologia 174: 665-677. DOI: https://doi.org/10.1007/s00442-013-2821-6

Ross SD. 1983. Enhancement of shoot elongation in Douglas-fir by gibberellin A4/7 and its relation to the hormonal promotion of flowering. Canadian Journal of Forest Research 13: 986-994. DOI: https://doi.org/10.1139/x83-131

RStudio Team. 2020. RStudio: Integrated Development for R. RStudio. https://www.rstudio.com/categories/rstudio-ide/ (accessed April 5, 2022)

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676-682. DOI: https://doi.org/10.1038/nmeth.2019

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental - Especies nativas de México de flora y fauna silvestres - Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - Lista de especies en riesgo. Diario Oficial de la Federación. 2da Sección, 30 de diciembre de 2010. https://www.dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm (accessed November 18, 2022)

Song YS, Lee SH, Jo JA, Choi SH, Seo DJ, Wi SG, Jung, W. J. 2018. Changes in the activity of peroxidase and dehydrogenase in pear pollen during germination under different storage conditions. Horticultural Science and Technology 36: 777-788. DOI: https://doi.org/10.12972/kjhst.20180076

Stanley RG, Linskens HF. 1974. Viability tests. In: Pollen: Biology Biochemistry Management. Springer-Verlag, pp. 67-86. DOI: https://doi.org/10.1007/978-3-642-65905-8_6

Takaso T, Owens JN. 1994. Effects of ovular secretions on pollen in Pseudotsuga menziesii (Pinaceae). American Journal of Botany 81: 504-513. DOI: https://doi.org/10.1002/j.1537-2197.1994.tb15475.x

Tello J, Montemayor MI, Forneck A, Ibáñez J. 2018. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter-and intra-cultivar diversity in grapevine. Plant Methods 14: 1-17. DOI: https://doi.org/10.1186/s13007-017-0267-2

van Bilsen DG, Hoekstra FA, Crowe LM, Crowe JH. 1994. Altered phase behavior in membranes of aging dry pollen may cause imbibitional leakage. Plant Physiology 104: 1193-1199. DOI: https://doi.org/10.1104/pp.104.4.1193

Vargas-Hernández JJ, Vargas-Abonce JI. 2016. Effect of giberellic acid (GA4/7) and girdling on induction of reproductive structures in Pinus patula. Forest Systems 25: 7. DOI: https://doi.org/10.5424/fs/2016252-09254

Ventura-Ríos A, López Upton J, Vargas-Hernández JJ, Guerra-de la Cruz V. 2010. Characterization of populations of Pseudotsuga menziesii (MIRB.) Franco in central México: Implications for conservation. Revista Fitotecnia Mexicana 33: 107-116.

Vieitez-Cortizo E. 1952. The use of 2,3,5-triphenyltetrazolium chloride to determine the vitality of pollen. Anales de Edafología y Fisiología Vegetal 11: 1033-1044.

von Aderkas P, Nepi M, Rise M, Buffi F, Guarnieri M, Coulter A, Gill K, Lan P, Rzemieniak S, Pacini E. 2012. Post-pollination prefertilization drops affect germination rates of heterospecific pollen in larch and Douglas-fir. Sexual Plant Reproduction 25: 215-225. DOI: https://doi.org/10.1007/s00497-012-0193-4

Webber JE, Bonnet-Masimbert M. 1993. The response of dehydrated Douglas fir (Pseudotsuga menziesii) pollen to three in vitro viability assays and their relationship to actual fertility. Annales des Sciences Forestières 50: 1-22. DOI: https://doi.org/10.1051/forest:19930101

Webber JE, Painter RA. 1996. Douglas-fir pollen management manual. Ministry of Forests Research Program. https://www.for.gov.bc.ca/hfd/pubs/docs/wp/wp02.htm (accessed February 3, 2022)

Webber JE, Ross SD, Pharis RP, Owens JN. 1985. Interaction between gibberellin A4/7 and root-pruning on the reproductive and vegetative process in Douglas-fir. II. Effects on shoot elongation and its relationship to flowering. Canadian Journal of Forest Research 15: 348-353. DOI: https://doi.org/10.1139/x85-056

Wheeler NC, Wample RL, Pharis RP. 1980. Promotion of flowering in the Pinaceae by gibberellins: IV. Seedlings and sexually mature grafts of lodgepole pine. Physiologia Plantarum 50: 340-346. DOI: https://doi.org/10.1111/j.1399-3054.1980.tb04111.x

Xu J, Li B, Liu Q, Shi Y, Peng J, Jia M, Liu Y. 2014. Wide-scale pollen banking of ornamental plants through cryopreservation. Cryo Letters 35: 312-319.

Published
2023-11-15
How to Cite
Rubio-Plascencia, C., Sánchez-Salgado, M. L., García-Campusano, F., & Muñoz-Gutierrez, L. (2023). Automated monitoring of pollen quality in Douglas fir using digital images: applications for handling and storage. Botanical Sciences, 102(1), 172-188. https://doi.org/10.17129/botsci.3356
Section
STRUCTURAL BOTANY / BOTÁNICA ESTRUCTURAL