Tree stratum alteration decreases C use efficiency and the stability of litter decomposition in a sacred fir (Abies religiosa) forest

keywords: Specific enzymatic activity, biogeochemistry, metabolic quotient, carbon mineralization


Background: There is limited information to predict the direction in which canopy modification affects the microbial carbon use efficiency (CUE) and, consequently, the magnitude and stability of litter decomposition in monodominant sacred fir (Abies religiosa) forests.

Questions: What is the effect of tree stratum alteration on CUE and stability of litter decomposition in an A. religiosaforest?

Study sites and dates: Two conditions inside a sacred fir forest were selected: A) a naturally monodominant homogeneous condition, and B) a heterogeneous condition with a non-monospecific tree stratum derived from local disturbances (wildfire and reforestation) occurred on a single occasion 18 years ago.

Methods: In each condition (homogeneous and heterogeneous), the Importance Value Index (IVI) was calculated in the tree stratum, while chemical composition, microbial carbon (C) concentration, enzyme activities and C mineralization were measured in litter samples. The specific enzymatic activity and the metabolic quotient were calculated as CUE indicators, and the coefficient of variation as a proxy for litter decomposition stability.

Results: A change in tree species composition and an increase in tree species richness in the heterogeneous condition was found, which decreased litter phosphorous (P) concentration. This promoted a high microbial activity and low CUE, favoring C mineralization. Furthermore,  low stability during litter decomposition was observed as tree species richness increased.

Conclusions: Tree stratum heterogeneity, as a consequence of past disturbances, decreases CUE and the stability of litter decomposition in an A. religiosa forest.


Download data is not yet available.

Author Biography

Bruno Chávez-Vergara, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad de México

Investigardor Asociado C de Tiempo Completo del Departamento de Edafologia. Instituto de Geología ,UNAM

Tree stratum alteration decreases C use efficiency and the stability of litter decomposition in a sacred fir (<em>Abies religiosa</em>) forest


Aguilar-Rodríguez S, Barajas-Morales J. 2005. Anatomía de la madera de especies arbóreas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Boletín de la Sociedad Botánica de México 77: 51-58. DOI:

Alef K. 1995. Dehydrogenase activity. In: Alef K, Nannipieri P, eds. Methods in applied soil microbiology and biochemistry. California, San Diego: Academic Press, pp: 228-231. ISBN: 9780125138406.

Alvarado-Rosales D. 1989. Declinación y muerte del bosque de oyamel (Abies religiosa) en el sur del Valle de México. MSc Thesis. Colegio de Postgraduados en Ciencias Agrícolas.

Anderson TH, Domsch KH. 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry 25: 393-395. DOI:

Anderson TH, Domsch KH. 2010. Soil microbial biomass: The eco-physiological approach. Soil Biology and Biochemistry 42: 2039-2043. DOI:

Argüelles-Moyao A, Garibay-Orijel R, Márquez-Valdelamar L, Arellano-Torres E. 2017. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza 27: 53-65. DOI:

Arriola-Padilla VJ, Estrada-Martínez E, Ortega-Rubio A, Pérez-Miranda R, Gijón-Henández AR. 2014. Deterioro en áreas naturales protegidas del centro de México y del Eje Neovolcánico Transversal. Investigación y Ciencia de la Universidad Autónoma Aguascalientes 60: 37-49.

Aubert M, Margerie P, Trap J, Bureau F. 2010. Aboveground-belowground relationships in temperate forests: Plant litter composes and microbiota orchestrates. Forest Ecology and Management 259: 563-572. DOI:

Avedaño DM, Acosta M, Carrillo F, Etchevers JD. 2009. Estimación de biomasa y carbono en un bosque de Abies religiosa. Revista Fitotecnia Mexicana 32: 233-238.

Barajas-Guzmán G, Hernández-Rosales D, Paredes-García S, Peña-Becerril J, Álvarez-Sánchez J. 2020. Edaphic microbial CO2 in a forest of Abies religiosa (Kunth) Schltdl. & Cham. in Mexico City. Revista Mexicana de Ciencias Forestales 11: 108-131. DOI:

Berg B. 2014. Decomposition patterns for foliar litter - A theory for influencing factors. Soil Biology and Biochemistry 78: 222-232. DOI:

Boch S, Prati D, Müller J , Socher S, Baumbach H, Buscot F, Gockel S, Hemp A, Hessenmöller D, Kalko EKV, Linsenmair KE, Pfeiffer S, Pommer U, Schöning I, Schulze ED, Seilwinder C, Weisser WW, Wells K, Fischer M 2013. High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic Applied Ecology 14: 496-505. DOI:

Bonanomi G, Incerti G, Antignani V, Copodilupo M, Mazzoleni S. 2010. Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant and Soil 331: 481-496. DOI:

Bremner JM. 1996. Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, eds. Methods of soil analysis, part 3. Chemical methods. Wisconsin, Madison: Soil Science Society of America, pp: 1085-1121. Online ISBN: 9780891188667. DOI:

Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079-1087. DOI:

Chávez-Vergara B, Merino A, González-Rodríguez A, Oyama K, García-Oliva F. 2018. Direct and legacy effects of plant traits control litter decomposition in a deciduous oak forest in Mexico. PeerJ 6: e5095. DOI:

Chávez-Vergara B, Merino A, Vázquez-Marrufo G, García-Oliva F. 2014. Organic matter dynamics and microbial activity during decomposition of litter under two native neotropical oak species in a temperate deciduous forest in Mexico. Geoderma 235-236: 133-145. DOI:

Chávez-Vergara B, Rosales-Castillo A, Merino A, Vázquez-Marrufo G, Oyama K, García-Oliva F. 2016. Quercus species control nutrients dynamics by determining the composition and activity of the forest floor fungal community. Soil Biology and Biochemistry 98: 186-195. DOI:

Chico-Avelino M, Trinidad-Trinidad MÁ, Montoya-Ayala R. 2015. Evaluación del cambio de uso de suelo en el parque nacional “La Marquesa” (1994-2007), aplicando tecnología SIG. Ciencias Espaciales 8: 243-258. DOI:

Coleman DC, Anderson RV, Cole CV, Elliott ET, Woods L, Campion MK. 1977. Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomasscarbon. Microbial Ecology 4: 373-380. DOI:

CONANP-SEMARNAT [Comisión Nacional de Áreas Naturales protegidas-Secretaría de Medio Ambiente y Recursos Naturales]. 2006. Programa de conservación y manejo Parque Nacional Desierto de los Leones. México, DF: CONANP. ISBN: 968-817-775-X.

Cuevas-Guzmán R, Cisneros-Lepe EA, Jardel-Peláez EJ, Sánchez-Rodríguez EV, Guzmán-Hernández L, Núñez-López NM, Rodríguez-Guerrero C. 2011. Análisis estructural y de diversidad en los bosques de Abies de Jalisco, México. Revista Mexicana de Biodiversidad 82: 1219-1233. DOI:

Curtis J, McIntosh R. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476-496. DOI:

Dietze MC. 2017. Prediction in ecology: a first?principles framework. Ecological Applications 27: 2048-2060. DOI:

Domínguez-Bernal B. 2011. Levantamiento nutricional en Abies religiosa a lo largo de un ciclo anual en el Parque Nacional Izta-Popo. BSc Thesis. Universidad Nacional Autónoma de México.

Donohue I, Petchey OL, Montoya JM, Jackson AL, McNally L, Viana M, Healy K, Lurgi M, O'Connor NE, Emmerson MC. 2013. On the dimensionality of ecological stability. Ecology Letters 16: 421-429. DOI:

Endara-Agramont AR, Franco-Maass S, Nava-Bernal G, Valdez-Hernández JI, Fredericksen TS. 2012. Effect of human disturbance on the structure and regeneration of forests in the Nevado de Toluca National Park, Mexico. Journal of Forestry Research 23: 39-44. DOI:

Ficken CD, Wright JP. 2017. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions. Plos One 12: e0186292. DOI:

Galeana-Pizaña J, Ordóñez-Díaz JA, Corona-Romero N. 2013. Estimación de contenido de carbono en la cuenca del río Magdalena, México. Madera y Bosques 19: 53-69. DOI:

Galicia L, Gamboa-Cáceres AM, Cram S, Chávez-Vergara B, Peña-Ramírez V, Saynes V, Siebe C. 2016. Almacén y dinámica del carbono orgánico del suelo en bosques templados de México. Terra Latinoamericana 34: 1-29.

Gartner T, Cardon Z. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104: 230-246. DOI:

Ge X, Xiao W, Zeng L, Huang Z, Zhou B, Schaub M, Li MH. 2017. Relationships between soil–litter interface enzyme activities and decomposition in Pinus massoniana plantations in China. Journal of Soils and Sediments 17: 996-1008. DOI:

Gebrewahid Y, Abrehe S. 2019. Biodiversity conservation through indigenous agricultural practices: Woody species composition, density and diversity along an altitudinal gradient of Northern Ethiopia. Cogent Food and Agriculture 5: 1700744. DOI:

Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S. 2010. Diversity meets decomposition. Trends in Ecology and Evolution 25: 372-380. DOI:

Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV, Lieskovsky J, Munteanu C, Ostapowicz K, Hostert P. 2014. Remote sensing of environment forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sensing of Environment 151: 72-88. DOI:

Grossman JJ, Cavender-Bares J, Hobbie SE. 2020. Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecological Monographs 90: e01407. DOI:

Hernández-Álvarez AG, Reyes-Ortíz JL, Villanueva-Díaz J, Sánchez-González A. 2021. Variation in the Abies religiosa (Pinaceae) forest structure at different management and disturbance conditions. Acta Botanica Mexicana 128: e1752. DOI:

Holden S, Gutierrez A, Treseder KK. 2013. Changes in Soil Fungal Communities, Extracellular Enzyme Activities, and Litter Decomposition Across a Fire Chronosequence in Alaskan Boreal Forests. Ecosystems 16: 34-46. DOI:

Huffman EWD. 1977. Performance of a new carbon dioxide coulometer. Microchemical Journal 22: 567-573. DOI:

Jasso-Flores I, Galicia L, Chávez-Vergara B, Merino A, Tapia-Torres Y, García-Oliva F. 2020. Soil organic matter dynamics and microbial metabolism along an altitudinal gradient in Highland tropical forests. Science of the Total Environment 741: 140143. DOI:

Jiménez-Vazquez RE. 2012. Assessing success of forest restoration efforts in degraded montane cloud forests in southern Mexico. MSc Thesis. Michigan Technological University.

Joergensen RG. 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEC value. Soil Biology and Biochemistry 28: 25-31. DOI:

Joergensen RG, Mueller T. 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEN value. Soil Biology and Biochemistry 28: 33-37. DOI:

Keeler BL, Hobbie SE, Kellogg LE. 2009. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1-15. DOI:

Keith AN, van der Wal R, Brooker RW, Osler GHR, Chapman SJ, Burslem DFRP, Elston DA. 2008. Increasing litter species richness reduces variability in a terrestrial decomposer system. Ecology 89: 2657-2664. DOI:

Li D, Peng S, Chen B. 2013. The effects of leaf litter evenness on decomposition depend on which plant functional group is dominant. Plant and Soil 365: 255-266. DOI:

Luo Y, Keenan TF, Smith M. 2015. Predictability of the terrestrial carbon cycle. Global Change Biology 21:1737-1751. DOI:

Manzoni S, Piñeiro G, Jackson RB, Jobbágy EG, Kim JH, Porporato A. 2012. Analytical models of soil and litter decomposition: Solutions for mass loss and time-dependent decay rates. Soil Biology and Biochemistry 50: 66-76. DOI:

McGrady-Steed J, Harris P, Morin, P. 1997. Biodiversity regulates ecosystem predictability. Nature 390: 162-165. DOI:

Meier CL, Bowman WD. 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences 105: 19780-19785. DOI:

Mendoza-Hernández PE, Orozco-Segovia A, Meave JA, Valverde T, Martínez-Ramos M. 2013. Vegetation recovery and plant facilitation in a human-disturbed lava field in a megacity: searching tools for ecosystem restoration. Plant Ecology 214: 153-167. DOI:

Mikita-Barbato RA, Kelly JJ, Tate RL. 2015. Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands. Soil Biology and Biochemistry 86: 67-76. DOI:

Montoya E, Guzmán-Plazola RA, López-Mata L. 2020. Fragmentation dynamics in an Abies religiosa forest of central Mexico. Canadian Journal of Forest Research 50: 680-688. DOI:

Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A

Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications 5: 3694. DOI:

Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36. DOI:

Osono T, Takeda H. 2005. Decomposition of organic chemical components in relation to nitrogen dynamics in leaf litter of 14 tree species in a cool temperate forest. Ecological Research 20: 41-49. DOI:

Peña-Mendoza ER, Gómez-Guerrero A, Fenn ME, Hernández-de la Rosa P, Alvarado-Rosales D. 2017. Nutrimentos en follaje y depósito húmedo de nitrato, amonio y sulfato del lavado de copa en bosques de Abies religiosa. Revista Mexicana de Ciencias Agrícolas 3: 2793-2805. DOI:

Pérez-Pazos E, Villegas-Ríos M, Garibay-Orijel R, Salas-Lizana R. 2019. Two new species of Clavulina and the first record of Clavulina reae from temperate Abies religiosa forests in central Mexico. Mycological Progress 18: 1187-1200. DOI:

Pérez-Valera E, Verdú M, Navarro-Cano JA, Goberna M. 2020. Soil microbiome drives the recovery of ecosystem functions after fire. Soil Biology and Biochemistry 149: 107948. DOI:

Peterson G, Allen CR, Holling CS. 1998. Ecological Resilience, Biodiversity, and Scale. Ecosystems 1: 6-18. DOI:

Pineda-López MR, Ortega-Solís R, Sánchez-Velásquez LR, Ortiz-Ceballos G, Vázquez-Domínguez G. 2013. Estructura poblacional de Abies religiosa (Kunth) Schltdl. et Cham., en el Ejido El Conejo del Parque Nacional Cofre de Perote, Veracruz, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente 19: 375-385. DOI:

Pinzari F, Maggi O, Lunghini D, Di Lonardo DP, Persiani AM. 2017. A simple method for measuring fungal metabolic quotient and comparing carbon use efficiency of different isolates: Application to Mediterranean leaf litter fungi. Plant Biosystems 151: 371-376. DOI:

Pinzari F. Trinchera A, Benedetti A, Sequi P. 1999. Use of biochemical indices in the mediterranean environment: comparison among soils under different forest vegetation. Journal of Microbiological Methods 36: 21-28. DOI:

Prescott CE. 2002. The influence of the forest canopy on nutrient cycling. Tree Physiology 22: 1193-1200. DOI:

Purahong W, Kapturska D, Pecyna MJ, Schulz E, Schloter M, Buscot F, Hofrichter M, Krüger D. 2014. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: A case study from Central European forests. Plos One 9: 1-11. DOI:

Quintana-Ascencio PF, Ramírez-Marcial N, González-Espinosa M, Martínez-Icó M. 2004. Sapling survival and growth of coniferous and broad-leaved tres in successional highland hábitats in Mexico. Applied Vegetation Science 7: 81-88. DOI:

Razo-Zárate R, Gordillo-Martínez AJ, Rodríguez-Laguna R, Maycotte-Morales CC, Acevedo-Sandoval OA. 2013. Estimación de biomasa y carbono almacenado en árboles de oyamel afectados por el fuego en el Parque Nacional “El Chico”, Hidalgo, México. Madera y Bosques 19: 73-86. DOI:

Rodríguez-Palacios S. 2009. Arquitectura del paisaje en la microcuenca del Parque Nacional Insurgente Miguel Hidalgo y Costilla. BSc Thesis. Universidad Nacional Autónoma de México.

Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ. 2006. Interactions of Bacteria and Fungi on Decomposing Litter: Differential Extracellular Enzyme Activities. Ecology 87: 2559-2569. DOI:[2559:iobafo];2.

Rzedowski J. 1978. Vegetación de México. México, DF: Limusa. ISBN: 9789681800024.

Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA. 2012. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecology and Management 275: 98-106. DOI:

Salaya-Domínguez JM, López-López MA, Brito-Vega H, Gómez-Méndez E. 2012. Nutritional diagnostic methods in Pinus patula plantations. Journal of Environmental Quality Management 1: 5-14. DOI: DOI: Sánchez-González A, López-Mata L, Granados-Sánchez D. 2005. Semejanza florística entre los bosques de Abies religiosa (H. B. K.) Cham. & Schltdl. de la Faja Volcánica Transmexicana. Investigaciones Geográficas, Boletín del Instituto de Geografía 56: 62-76. DOI:

Sánchez-Velásquez LR, Pineda-López MR, Hernández-Martínez A. 1991. Distribución y estructura de la población de Abies religiosa (H.B.K.) Schlecht. & Cham., en el Cofre de Perote, Estado de Veracruz, México. Acta Botanica Mexicana 16: 45-55. DOI:

Santibañez-Andrade G, Castillo-Argüero S, Martínez-Orea Y. 2015. Evaluación del estado de conservación de la vegetación de los bosques de una cuenca heterogénea del Valle de México. Bosque 36: 299-313. DOI:

Santini NS, Villarruel-Arroyo A, Adame MF, Lovelock CE, Nolan RH, Gálvez-Reyes N, Gónzalez EJ, Olivares-Resendiz B, Mastretta-Yanes A, Piñero D. 2020. Organic Carbon Stocks of Mexican Montane Habits: Variation Among Vegetation Types and Land-Use. Frontiers in Environmental Science 8: 581476. DOI:

Setiawan NN, Vanhellemont M, Schrijver A De, Schelfhout S, Baeten L, Verheyen K. 2016. Mixing effects on litter decomposition rates in a young tree diversity experiment. Acta Oecologica 70: 79-86. DOI:

Spohn M, Chodak M. 2015. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biology and Biochemistry 81: 128-133. DOI:

Steinweg JM, Dukes JS, Paul EA, Wallenstein MD. 2013. Microbial responses to multi-factor climate change: Effects on soil enzymes. Frontiers in Microbiology 4: 146-11. DOI:

Sudachkova NE, Milyutina IL, Romanova LI, Semenova GP. 2004. The Annual Dynamics of Reserve Compounds and Hydrolitic Enzymes Activity in the Tissues of Pinus Sylvestris L . and Larix sibirica Ledeb.:The Metabolism of Reserve Compounds in the Tissues of Siberian Conifers. Eurasian Journal of Forest Research 7: 1-10.

Suseela V, Tharayil N. 2018. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress?induced modifications in plant chemistry. Global Change Biology 24: 1428-1451. DOI:

Talbot JM, Treseder KK. 2012. Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93: 345-354. DOI:

Temiño-Villota S, Rodríguez-Trejo DA, Molina-Terrén DM, Ryan KC. 2016. Modelling initial mortality of Abies religiosa in a crown fire in Mexico. Forest Systems 25: e047. DOI:

Tilman D, Reich P, Knops J. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441: 629-632. DOI:

Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718-720. DOI:

Torras O, Saura S. 2008. Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. Forest Ecology and Management 255: 3322-3330. DOI:

Tovar-Velasco JA, Valenzuela-Garza R . eds. 2006. Los hongos del Parque Nacional Desierto de los Leones primer espacio de conservación biológica en México. México: Gobierno del Distrito Federal. ISBN 970-95307-0-4

van Breugel M, Martínez-Ramos M, Bongers F. 2006. Community dynamics during early secondary succession in Mexican tropical rain forests. Journal of Tropical Ecology 22: 663-674. DOI:

Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19: 703-707. DOI:

Vergutz L, Manzoni S, Porporato A, Ferreira R, Jackson RB. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82: 205-220. DOI:

Vivanco L, Austin AT. 2008. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology 96: 727-736. DOI:

Waldrop MP, Balser TC, Firestone MK. 2000. Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry 32: 1837-1846. DOI:

Wales SB, Kreider MR, Atkins J, Hulshof CM, Fahey RT, Nave LE, Nadelhoffer KJ, Gough CM. 2020. Stand age, disturbance history and the temporal stability of forest production. Forest Ecology and Management 460: 117865. DOI:

Wang C. 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management 222: 9-16. DOI:

Wang H, Liu S, Wang J , You Y, Yang Y, Shi Z, Huang X, Zheng L, Li Z, Ming A, Lu L, Cai D. . 2018. Mixed-species plantation with Pinus massoniana and Castanopsis hystrix accelerates C loss in recalcitrant coniferous litter but slows C loss in labile broadleaf litter in southern China. Forest Ecology and Management 422: 207-213. DOI:

Wang G, Post WM, Mayes MA. 2013. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecological Applications 23: 255-272. DOI:

Wu D, Li T, Wan S. 2013. Time and litter species composition affect litter-mixing effects on decomposition rates. Plant and Soil 371: 355-366. DOI:

Xiao W, Chen HYH, Kumar P, Chen C, Guan Q. 2019. Multiple interactions between tree composition and diversity and microbial diversity underly litter decomposition. Geoderma 341: 161-171. DOI:

Zarco-Espinosa VM, Valdez-Hernández JL, Ángeles-Pérez G, Castillo-Acosta O. 2010. Estructura y diversidad de la vegetación arbórea del Parque Estatal Agua Blanca, Macuspana, Tabasco. Universidad y Ciencia 26: 1-17.

Zepeda-Gómez C, Burrola-Aguilar C, Estrada-Zúñiga MA, White-Olascoaga L. 2018. Riqueza y afinidades geográficas de la flora de un bosque de Abies religiosa de la Faja Volcánica Transmexicana. Caldasia 40: 54-70. DOI:

Zhu J, Lu D, Zhang W. 2014. Effects of gaps on regeneration of woody plants: a meta-analysis. Journal of Forestry Research 25: 501-510. DOI:

How to Cite
Choreño-Parra, E. M., Ángeles-Pérez, G., Villegas-Ríos, M., Beltrán-Paz, O., Pérez-Pazos, E., Quintero-Gradilla, S., & Chávez-Vergara, B. (2022). Tree stratum alteration decreases C use efficiency and the stability of litter decomposition in a sacred fir (Abies religiosa) forest. Botanical Sciences, 100(4), 857-876.