Pharmacological evaluation of the antinociceptive activity and phytochemical analysis of active extracts of Salvia purpurea Cav.

  • Cristian Cuevas-Morales Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales. Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México https://orcid.org/0000-0002-5227-0083
  • Lizeth M. Zavala-Ocampo Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales. Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México https://orcid.org/0000-0001-5885-279X
  • Rubén San Miguel-Chávez Laboratorio de Fitoquímica, Posgrado en Botánica. Colegio de Postgraduados, Texcoco https://orcid.org/0000-0003-0187-5733
  • María Eva González-Trujano Laboratorio de Neurofarmacología de Productos Naturales. Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México https://orcid.org/0000-0002-4399-1508
  • Francisco A. Basurto-Peña Jardin Botánico. Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México https://orcid.org/0000-0001-6020-0854
  • Verónica Muñoz-Ocotero Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales. Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México https://orcid.org/0000-0001-5504-8798
  • Eva Aguirre-Hernández Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales. Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México https://orcid.org/0000-0002-9582-5720
keywords: Pain, flavonoids, Lamiaceae, Salvia purpurea, terpenes

Abstract

Background: Salvia purpurea Cav., commonly known as “salvia moradita”, is a medicinal plant used in Oaxaca, Veracruz and Chiapas for its analgesic, anti-inflammatory and antidiarrheic properties. However, there is no scientific evidence supporting its pain alleviating potential.

Hypothesis: Terpenes and phenolic compounds are responsible for the antinociceptive activity of S. purpurea extracts.

Studied specimen: Salvia purpurea Cav. (Lamiaceae)

Place of study and year: Salvia purpurea was collected in Santiago Huauclilla, Oaxaca, in October 2017.

Methods: The acute toxicity (Lethal dose fifty, LD50) of the acetone, methanol and aqueous S. purpurea extracts was determined following the OECD protocol No. 423. The extracts were administered by gavage (p.o.) at doses ranging from 3 to 300 mg/kg to evaluate antinociceptive effects using the writhing and formalin tests in mice. HPLC analysis was performed to identify the nature of the metabolites present in the active extracts in comparison with their respective standards.

Results: Acute toxicity was calculated to be LD50 > 2000 mg/kg, p.o. The antinociceptive effects for each extract were significant in all the tested doses and in a non-dependent dose manner in both tests. Phytochemical analysis allowed to identify compound of terpenic and phenolic nature.

Conclusions: The results of the present study reinforce the analgesic and anti-inflammatory use of S. purpurea in Traditional Mexican Medicine where terpenes and phenolic compounds participate in these activities.

Downloads

Download data is not yet available.
Pharmacological evaluation of the antinociceptive activity and phytochemical analysis of active extracts of <em>Salvia purpurea</em> Cav.

References

Akaberi M, Iranshahi M, Mehri S. 2016. Molecular signaling pathways behind the biological effects of Salvia species diterpenes in neuropharmacology and cardiology Phytotherapy Research 30: 878-893. DOI: http://dx.doi.org/10.1002/ptr.5599

Akkol EK, Göger F, Ko?ar M, Ba?er KH. 2008. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry 108: 942-949. DOI: https://doi.org/10.1016/j.foodchem.2007.11.071

Al-Yousuf MH, Bashir AK, Ali BH, Tanira MO, Blunden G. 2002. Some effects of Salvia aegyptiaca L. on the central nervous system in mice. Journal of Ethnopharmacology 81: 121-127. DOI: https://doi.org/10.1016/s0378-8741(02)00057-0

Calixto JB, Beirith A, Ferreira J, Santos AR, Filho VC, Yunes RA. 2000. Naturally occurring antinociceptive substances from plants. Phytotherapy Research 14: 401-418. DOI: https://doi.org/10.1002/1099-1573(200009)14:6<401::AID-PTR762>3.0.CO;2-H

Collier HO, Dinneen LC, Johnson C, Schneider C. 1968. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal of Pharmacology and Chemotherapy 32: 295-310. DOI: https://doi.org/10.1111/j.1476-5381.1968.tb00973.x

Covarrubias-Gómez A, Guevara-López U, Gutiérrez-Salmerón C, Betancourt-Sandoval JA, Córdova-Domínguez JA. 2010. Epidemiología del dolor crónico en México. Revista Mexicana de Anestesiología 33: 207-213.

Crowley RS, Riley AP, Alder AF, Anderson RJ, Luo D, Kaska S, Maynez P, Kivell BM, Prisinzano TE. 2020. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: Design, synthesis, and evaluation of analogues with improved potency and G-protein activation bias at the µ-opioid receptor. ACS Chemical Neuroscience 12: 1781-1790 DOI: https://doi.org/10.1021/acschemneuro.0c00191

do Nascimento JET, de Morais SM, de Lisboa DS, de Oliveira Sousa M, Santos SAAR, Magalhães FEA, Campos AR. 2018. The orofacial antinociceptive effect of kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomedicine and Pharmacotherapy 107: 1030-1036. DOI: https://doi.org/10.1016/j.biopha.2018.08.089

Domínguez-Vázquez G, Castro-Ramírez A. 2002. Usos medicinales de la familia Labiatae en Chiapas, México. Etnobiología 2: 19-31.

dos Santos MD, Almeida MC, Lopes NP, de Souza GE. 2006. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biological and Pharmaceutical Bulletin 29: 2236-40. DOI: https://doi.org/10.1248/bpb.29.2236

Fialho MFP, Brusco I, da Silva Brum E, Piana M, Boligon AA, Trevisan G, Oliveira SM. 2017. Buddleja thyrsoides Lam. crude extract presents antinociceptive effect on an arthritic pain model in mice. Biochemical Journal 474: 2993-3010. DOI: https://doi.org/10.1042/BCJ20170008

Flores-Bocanegra L, González-Andrade M, Bye R, Linares E, Mata R. 2017. ?-glucosidase inhibitors from Salvia circinata. Journal of Natural Products 80: 1584-1593. DOI: https://doi.org/10.1021/acs.jnatprod.7b00155

Forouzanfar F, Hosseinzadeh H. 2018. Medicinal herbs in the treatment of neuropathic pain: a review. Iranian Journal of Basic Medical Sciences 21: 347-358. DOI: http://dx.doi.org/10.22038/IJBMS.2018.24026.6021

Ghorbani A, Esmaeilizadeh M. 2017. Pharmacological properties of Salvia officinalis and its components. Journal or Traditional and Complementary Medicine 7: 433-440. DOI: http://dx.doi.org/10.1016/j.jtcme.2016.12.014

Githinji ChG, Mbugua PM, Kanui TI, Kariuki DK. 2012, Analgesic and anti-inflammatory activities of 9-hexacosene and stigmasterol isolated from Mondia whytei. Phytopharmacology 2: 212-223.

González-Chávez MM, Alonso-Castro AJ, Zapata-Morales JR, Arana-Argáez V, Torres-Romero JC, Medina-Rivera YE, Sánchez-Mendoza E, Pérez-Gutiérrez S. 2018. Anti-inflammatory and antinociceptive effects of tilifodiolide, isolated from Salvia tiliifolia Vahl (Lamiaceae). Drug Development Research 79: 165-172. DOI: https://doi.org/10.1002/ddr.21432

González-Trujano ME, Brindis F, López-Ruiz E, Ramírez-Salado I, Martínez A, Pellicer F. 2016. Depressant effects of Salvia divinorum involve disruption of physiological sleep. Phytotherapy Research 30: 1137-1145. http://dx.doi.org/10.1002/ptr.5617

Guida F, Luongo L, Aviello G, Palazzo E, De Chiaro M, Gatta L, Boccella S, Marabese I, Zjawiony JK, Capasso R, Izzo AA, De Novellis V, Maione S. 2012. Salvinorin A reduces mechanical allodynia and spinal neuronal hyperexcitability induced by peripheral formalin injection. Molecular Pain 8: 60-74. DOI: http://dx.doi.org/10.1186/1744-8069-8-60

Guzmán-Gómez O. 2014. Evaluación de la Actividad Antiinflamatoria y Estudios Quimiométricos de Especies de Salvia de Xalapa, Veracruz y Municipios Aledaños. BSc Thesis. Universidad Veracruzana.

Hirota BC, Paula CD, de Oliveira VB, da Cunha JM, Schreiber AK, Ocampos FM, Barison A, Miguel OG, Miguel MD. 2016. Phytochemical and antinociceptive, anti-inflammatory, and antioxidant studies of Smilax larvata (Smilacaceae). Evidence Based Complementary Alternative Medicine 2016: 9894610. DOI: http://dx.doi.org/10.1155/2016/9894610

Holanda Pinto SA, Pinto LM, Guedes MA, Cunha GM, Chaves MH, Santos FA, Rao VS. 2008. Antinociceptive effect of triterpenoid ? and ? amyrin in rats on orofacial pain induced by formalin and capsaicin. Phytomedicine 15: 630-634. DOI: https://doi.org/10.1016/j.phymed.2007.11.016

Imanshahidi M, Hosseinzadeh H. 2006. The pharmacological effects of Salvia species on the central nervou-s system. Phytotherapy Research 20: 427-437. DOI: https://doi.org/10.1002/ptr.1898

Islam S, Shajib MS, Rashid RB, Khan MF, Al-Mansur MA, Datta BK, Rashid MA. 2019. Antinociceptive activities of Artocarpus lacucha Buch-ham (Moraceae) and its isolated phenolic compound, catechin, in mice. BMC Complementary and Alternative Medicine 19: 214. DOI: https://doi.org/10.1186/s12906-019-2565-x

Javed F, Jabeen Q, Aslam N, Awan AM. 2020. Pharmacological evaluation of analgesic, anti-inflammatory and antipyretic activities of ethanolic extract of Indigofera argentea Burm. f. Journal of Ethnopharmacology 259: 112966. DOI: https://doi.org/10.1016/j.jep.2020.112966

Jenks AA, Kim SC. 2013. Medicinal plant complexes of Salvia subgenus Calosphace: An ethnobotanical study of new world sage. Journal of Ethnopharmacology 146: 214-224. DOI: https://doi.org/10.1016/j.jep.2012.12.035

John TF, French LG, Erlichman JS. 2006. The antinociceptive effect of salvinorin A in mice. European Journal of Pharmacology 545: 129-133. DOI: https://doi.org/10.1016/j.ejphar.2006.06.077

Jung HJ, Song YS, Lim CJ, Park EH. 2009. Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of an ethanol extract of Salvia plebeia R. Brown. Journal of Ethnopharmacology 126: 355-360. DOI: https://doi.org/10.1016/j.jep.2009.08.031

Karami M, Shamerani MA, Alemy SH, Gohari AR, Ehsani Vostacolaee S. 2013. Comparison antinociceptive activity of the aqueous methanolic extracts of Salvia hypoleuca and Phytolacca americana in mice. European Review for Medical Pharmacological Sciences 17: 2755-2759. https://pubmed.ncbi.nlm.nih.gov/24174356/

Kim J, Durai P, Jeon D, Jung ID, Lee SJ, Park YM, Kim Y. 2018. Phloretin as a potent natural TLR2/1 inhibitor suppresses TLR2-induced inflammation. Nutrients 10: 868. DOI: https://doi.org/10.3390/nu10070868

Lesjak M, Beara I, Simin N, Pinta? D, Majki? T, Bekvalac K, Or?i? D, Mimica-Duki? N. 2018. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods 40: 68-75. DOI: https://doi.org/10.1016/j.jff.2017.10.047

Maione F, Cantone V, Pace S, Chini MG, Bisio A, Romussi G, Pieretti S, Werz O, Koeberle A, Mascolo N, Bifulco G. 2017. Anti-inflammatory and analgesic activity of carnosol and carnosic acid in vivo and in vitro and in silico analysis of their target interactions. British Journal of Pharmacology 174: 1497-1508. DOI: https://doi.org/10.1111/bph.13545

Martínez-Gordillo M, Bedolla-García B, Cornejo-Tenorio G, Fragoso-Martínez I, García Peña M, González-Gallegos G, Lara-Cabrera SI, Zamudio S. 2017. Lamiaceae de México. Botanical Science 95: 780-806. DOI: https://doi.org/10.17129/botsci.1871

McCurdy CR, Sufka K J, Smith GH, Warnick JE, Nieto MJ. 2006. Antinociceptive profile of salvinorin A, a structurally unique kappa opioid receptor agonist. Review of Pharmacology and Biochemistry Behavior 83: 109-13. DOI: https://doi.org/10.1016/j.pbb.2005.12.011

Mocan A, Babota M, Pop A, Fize?an I, Diuzheva A, Locatelli M, Carradori S, Campestre C, Menghini L, Sisea CR, Sokovi? M, Zengin G, P?ltinean R, Badarau S, C Vodnar DC, Cri?an G. 2020. Chemical constituents and biologic activities of Sage Species: A comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur. Antioxidants (Basel) 9: 480. DOI: https://doi.org/10.3390/antiox9060480

Moreno-Pérez GF, González-Trujano ME, Martínez-Gordillo MJ, San Miguel-Chávez R, Basurto-Peña F, Dorazco-González A, Aguirre-Hernández E. 2019. Amarisolide A and pedalitin as bioactive compounds in the antinociceptive effects of Salvia circinata (Lamiaceae). Botanical Science 97: 355-365. DOI: https://doi.org/10.17129/botsci.2187

Moreno-Pérez GF, Hernández-León A, Valle-Dorado MG, Cano-Martínez A, Narváez-González F, Aguirre-Hernández E, Salgado-Ceballos H, González-Trujano ME. 2021. Neo-clerodane diterpenic influence in the antinociceptive and anti-inflammatory properties of Salvia circinnata Cav. Journal of Ethnopharmacology 268: 113550. DOI: https://doi.org/10.1016/j.jep.2020.113550

Nambo-Camacho A. 2015. Etnobotánica de Santiago Huauclilla, Oaxaca y Evaluación Farmacológica de Zinnia peruviana. BSc Thesis. Universidad Nacional Autónoma de México.

OCDE [Organización para la Cooperación y el Desarrollo Económicos]. 2001. Guideline for testing of chemicals. Acute oral toxicity- acute toxic class method. https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl423.pdf (accessed April 06, 2020

Oliveira FA, Costa CL, Chaves MH, Almeida FR, Cavalcante IJ, Lima AF, Lima RC Jr, Silva RM, Campos AR, Santos FA, Rao VS. 2005. Attenuation of capsaicin-induced acute and visceral nociceptive pain by alpha-and beta-amyrin, a triterpenoid mixture isolated from Protium heptaphyllum resin in mice. Life Sciences 77: 2942-2952. DOI: https://doi.org/10.1016/j.lfs.2005.05.031

Olsen AE, Andresen T, Staahl C, Drewes AM. 2012. Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacological Reviews 64: 722-779. DOI: https://doi.org/10.1124/pr.111.005447

Ortiz-Mendoza N, Zavala-Ocampo LM, Martínez-Gordillo MJ, González-Trujano ME, Basurto Peña FA, Bazany-Rodríguez IJ, Rivera Chávez JA, Dorazco-González A, Aguirre-Hernández E. 2020. Antinociceptive and anxiolytic-like effects of a neo-clerodane diterpene from Salvia semiatrata aerial parts. Pharmaceutical Biology 58: 620-629. DOI: https://doi.org/10.1080/13880209.2020.1784235

Pinheiro MM, Boylan F, Fernandes PD. 2012. Antinociceptive effect of the Orbignya speciosa Mart. (Babassu) leaves: evidence for the involvement of apigenin. Life Sciences 91: 293-300. DOI: https://doi.org/10.1016/j.lfs.2012.06.013

Qnais EY, Abu-Dieyeh M, Abdulla FA, Abdalla SS. 2010. The antinociceptive and anti-inflammatory effects of Salvia officinalis leaf aqueous and butanol extracts. Pharmaceutical Biology 48: 1149-1156. DOI: https://doi.org/10.3109/13880200903530763

Rodrigues MR, Kanazawa LK, das Nerves TL, da Silva CF, Horst H, Pizzolatti MG, Santos AR, Baggio CH, Werner MF. 2012. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. Journal of Ethnopharmacology 139: 519-526. DOI: https://doi.org/10.1016/j.jep.2011.11.042

Santos JA, Piccinelli AC, Formagio MD, Oliveira CS, Santos EP, Alves Stefanello ME, Lanza Junior U, Oliveira RJ, Sugizaki MM, Kassuya CA. 2017. Antidepressive and antinociceptive effects of ethanolic extract and fruticuline A from Salvia lachnostachys Benth leaves on rodents. Plos One 12: 0172151.DOI: https://doi.org/10.1371/journal.pone.0172151

Sekhon-Loodu S, Ziaullah, Rupasinghe HP. 2015. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages. International Immunopharmacology 25: 199-206. DOI: https://doi.org/10.1016/j.intimp.2015.01.019

Selvaraj G, Kaliamurthi S, Thirungnasambandam R, Vivekanandan L, Balasubramanian T. 2014. Anti-nociceptive effect in mice of thillai flavonoid rutin. Biomedical and Environmental Sciences 27: 295-299. DOI: https://doi.org/10.3967/bes2014.052

Simón-Arceo K, González-Trujano ME, Coffeen U, Fernández-Mas R, Mercado F, Almanza A, Pellicer F. 2017. Neuropathic and inflammatory antinociceptive effects and electrocortical changes produced by Salvia divinorum in rats. Journal of Ethnopharmacology 206: 115–124. DOI: https://doi.org/10.1016/j.jep.2017.05.016

Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. 1992. The formalin test: an evaluation of the method. Pain 51: 5-17. DOI: https://doi.org/10.1016/0304-3959(92)90003-t

Tlacomulco-Flores L, Déciga-Campos M, González-Trujano ME, Carballo-Villalobos AI, Pellicer F. 2020. Antinociceptive effects of Salvia divinorum and bioactive salvinorins in experimental pain models in mice. Journal of Ethnopharmacology 248: 112276. DOI: https://doi.org/10.1016/j.jep.2019.112276

Topçu G. 2006. Bioactive triterpenoids from Salvia species. Journal of Natural Products 69: 482-487. DOI: https://doi.org/10.1021/np0600402

Ustun O, Sezik E. 2011. Analgesic activity of Salvia wiedemannii Boiss. used in Turkish folk medicine. Record of Natural Products 5: 328-331. DOI: https://doi.org/10.1055/s-0031-1282811

Vane JR, Botting RM. 1998. Mechanism of action of nonsteroidal anti-inflammatory drugs. The American Journal of Medicine 104: 2S-8S. DOI: https://doi.org/10.1016/s0002-9343(97)00203-9

Viana GSB, Bandeira MAM, Matos FJA. 2003. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva allemão. Phytomedicine 10: 189-195. DOI: https://doi.org/10.1078/094471103321659924

Wang J, Xu J, Gong X, Yang M, Zhang C, Li M. 2019. Biosynthesis, chemistry, and pharmacology of polyphenols from Chinese Salvia species: A review. Molecules 24: 155. DOI: https://doi.org/10.3390/molecules24010155

Wu YB, Ni ZY, Shi QW, Dong M, Kiyota H, Gu YC, Cong B. 2012. Constituents from Salvia species and their biological activities. Chemical Reviews 112: 5967-6026. DOI: https://pubs.acs.org/doi/10.1021/cr200058f

Xu Y, Lin D, Yu X, Xie X, Wang L, Lian L, Fei N, Chen J, Zhu N, Wang G, Huang X, Pan J. 2016. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors. Oncotarget 7: 20455-68. DOI: DOI: https://doi.org/10.18632/oncotarget.7973

Xue N, Wu X, Wu L, Li L, Wang F. 2019. Antinociceptive and anti-inflammatory effect of Naringenin in different nociceptive and inflammatory mice models. Life Sciences 217: 148-154. DOI: https://doi.org/10.1016/j.lfs.2018.11.013

Published
2022-01-26
How to Cite
Cuevas-Morales, C., Zavala-Ocampo, L. M., San Miguel-Chávez, R., González-Trujano, M. E., Basurto-Peña, F. A., Muñoz-Ocotero, V., & Aguirre-Hernández, E. (2022). Pharmacological evaluation of the antinociceptive activity and phytochemical analysis of active extracts of Salvia purpurea Cav. Botanical Sciences, 100(2), 383-396. https://doi.org/10.17129/botsci.3013
Section
PHYTOCHEMISTRY / FITOQUÍMICA