Phylogeography of Tigridia durangensis (Tigridieae: Iridaceae), an endemic species of the Mexican Transition Zone

  • Jorge David López-Pérez Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco
  • Aarón Rodríguez Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco
  • Eduardo Ruiz-Sanchez Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco
  • Pilar Zamora-Tavares Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco
  • Guadalupe Munguía-Lino Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco
keywords: Endemic, genetic structure, phylogeographic structure, Sierra Madre Occidental, Transmexican Volcanic Belt


Background: The topographic and climatic diversity of the Mexican Transition Zone (MTZ) has favored species richness, disjunctions and endemism. Tigridia durangensis is an endemic geophyte with disjunct distribution in the MTZ.

Questions and / or Hypotheses: What is the genetic diversity of Tigridia durangensis? Does it have genetic and phylogeographic structure? Were there any changes in its demographic history? Did the Quaternary climatic oscillations affect its area of distribution?

Methods: The cpDNA regions ndhF-rpL32, rpL32-trnL, and 3´trnV-ndhC of 55 individuals from 10 populations were sequenced. The genetic diversity and the genetic structure were estimated with Hd, π and FST. The parameters GST and NST determined the phylogeographic structure. The genealogical relationships were inferred with a haplotype net. Phylogenetic hypotheses were generated with Bayesian inference and Maximum likelihood. The demographic history was determined by means of neutrality tests, analyses of mismatch distribution (AMD) and Bayesian skyline plot. The paleodistribution was estimated with ecological niche models (ENMs).

Results: Tigridia durangensis showed genetic and phylogeographic structure. Nine haplotypes were identified; H1 and H2-H9 formed two intraspecific lineages. The neutrality tests were not significant. The AMD plot was congruent with the haplotype net. Tigridia durangensis experienced a bottleneck in the recent past and the ENMs displayed a disjunct distribution in all scenarios.

Conclusions: In Tigridia durangensis, the bottleneck and the interruption of the gene flow between the haplogroups might have been associated with orogenic processes and volcanism of the Transmexican Volcanic Belt.


Download data is not yet available.

Author Biography

Guadalupe Munguía-Lino, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco

Instituto de Botánica de la Universiad de Guadalajara. 

Investigación en Biogeografía de Iridaceae y plantas monocotiledoneas con potencial de uso

Phylogeography of <em>Tigridia durangensis</em> (Tigridieae: Iridaceae), an endemic species of the Mexican Transition Zone


Anguiano-Constante MA, Zamora-Tavares P, Ruiz-Sanchez E, Dean E, Rodríguez A, Munguía-Lino G. 2021. Population differentiation and phylogeography in Lycianthes moziniana (Solanaceae: Capsiceae), a perennial herb endemic to the Mexican Transition Zone. Biological Journal of the Linnean Society 132: 359-373. DOI:

Avise JC. 2000. Phylogeography: the history and formation of species. Inglaterra, Londres: President and Fellows of Harvard College. ISBN: 0-674-66638-0

Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I. 2013. BLAST: a more efficient report with usability improvements. Nucleic Acids Research 41: W29-W33. DOI:

Caballero M, Lozano-García S, Vázquez-Selem L, Ortega B. 2010. Evidencias de cambio climático y ambiental en registros glaciales y en cuencas lacustres del centro de México durante el último máximo glacial. Boletín de la Sociedad Geológica Mexicana 62: 359-377.

Chauveau O, Eggers L, Souza-Chies TT, Nadot S. 2012. Oil-producing flowers within the Iridoideae (Iridaceae): evolutionary trends in the flowers of the New World genera. Annals of Botany 110: 713-729. DOI:

Cruden RW. 1968. Three new species of Tigridia (Iridaceae) from Mexico. Brittonia 20: 314-320. DOI:

Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E. 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad 85: 189-199. DOI:

Domínguez-Domínguez O, Vázquez-Domínguez E. 2009. Filogeografía: aplicaciones en taxonomía y conservación. Animal Biodiversity and Conservation 32: 59-70.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Dunpaloup I, Schneider S, Excoffier L. 2002. A simulated annealing approach to define the genetic structure of population. Molecular Ecology 11: 2571-2581. DOI:

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. DOI:

Espejo-Serna A, López-Ferrari AR. 1996. Comentarios florístico-ecológicos sobre las iridáceas mexicanas. Acta Botanica Mexicana 34: 25-47. DOI:

Espejo-Serna A, López-Ferrari AR. 1998. Iridaceae. Flora de Veracruz 105: 1-58.

Espejo-Serna A, López-Ferrari AR, Ceja J. 2010. Iridaceae. Flora del bajío y de regiones adyacentes 166: 1-81.

Esri [Environmental Systems Research Institute]. 2010. ArcGIS 10.0. Redlands, California.

Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 5645-567. DOI:

Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. DOI:

Ferrari L, Orozco-Esquivel T, Manea V, Manea M. 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522-523: 122-149. DOI:

Ferrusquía-Villafranca I. 1993. Geología de México: una sinopsis. In: Ramamoorthy TP, Bye R, Lot A, Fa M, eds. Diversidad biológica de México: orígenes distribución. DF: Instituto de Biología, pp. 3-107. ISBN: 968-36-6588-8

Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315. DOI:

Flores-Tolentino M, Ortiz E, Villaseñor JL. 2019. Ecological niche models as a tool for estimating the distribution of plant communities. Revista Mexicana de Biodiversidad 90: e902829. DOI:

Fu XY. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.

Funk VA, Gostel M, Devine A, Kelloff CL, Wurdack K, Tuccinardi C, Radosavljevic A, Peters M, Coddington J. 2017. Guidelines for collection vouchers and tissues intended for genomic work (Smithsonian Institution): Botany Best Practices. Biodiversity Data Journal 5: e11625. DOI:

Goldblatt P. 2015. New and Validated Combinations in Tigridia (Iridaceae: Tigridieae). Novon: A Journal for Botanical Nomenclature 24: 14-15. DOI:

Goldblatt P, Manning JC. 2008. The Iris Family: Natural History and Classification. Oregon: Timber Press. ISBN: 978-088-1928-97-6

Goldblatt P, Rodríguez A, Powell MP, Davies TJ, Manning JC, Van der Bank M, Savolainen V. 2008. Iridaceae ‘out of Australasia’? Phylogeny, biogeography, and divergence time based on plastid DNA sequences. Systematic Botany 33: 495-508. DOI:

Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L. 2005. Petrogénesis ígnea de la Faja Volcánica Transmexicana. Boletín de La Sociedad Geológica Mexicana 57: 227-283. DOI:

Gong W, Chen C, Dobeš C, Fu C-X, Koch MA. 2008. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution 48: 1094-1105. DOI:

Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Martínez JF, Molina-Freaner F, Pérez-Farrera MA, Vovides AP, Matsuki Y, Suyama Y, Ohsawa TA, Watano Y, Kajita T. 2018. The phylogeography of the cycad genus Dioon (Zamiaceae) clarifies its Cenozoic expansion and diversification in the Mexican transition zone. Annals of Botany 121: 535-548. DOI:

Halffter G. 1987. Biogeography of the montane entomofauna of Mexico and Central America. Annual Review of Entomology 32: 95-114. DOI:

Halffter G, Morrone JJ. 2017. An analytical review of Halffter’s Mexican transition zone, and its relevance for evolutionary biogeography, ecology and biogeographical regionalization. Zootaxa 4226: 1-46. DOI:

Harpending HC. 1994. Signature of ancient populations growth in a low-resolutions mitochondrial DNA mismatch distribution. Human Biology 66: 591-600.

Hermogenes De Mendonça L, Ebach MC. 2020. A review of transition zones in biogeographical classification. Biological Journal of the Linnean Society 131: 717-736. DOI:

Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913. DOI:

Hoffmann FG, Owen JG, Baker RJ. 2003. mtDNA perspective of chromosomal diversification and hybridization in Peters’ tent?making bat (Uroderma bilobatum: Phyllostomidae). Molecular Ecology 12: 2981-2993. DOI:

Horne JB, van Herwerden L, Choat JH, Robertson DR. 2008. High population connectivity across the Indo-Pacific: Congruent lack of phylogeographic structure in three reef fish congeners. Molecular Phylogenetics and Evolution 49: 629-638. DOI:

Howard CC, Landis JB, Beaulieu JM, Cellinese N. 2020. Geophytism in monocots leads to higher rates of diversification. New Phytologist 225: 1023-1032. DOI:

Jetz W, Rahbek C, Colwell RK. 2004. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters 7: 1180-1191. DOI:

Jin J, Yang J. 2020. BDcleaner: a workflow for cleaning taxonomic and geographic errors in occurrence data archived in biodiversity databases. Global Ecology and Conservation 21: e00852. DOI:

Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110-1116. DOI:

Loveless MD, Hamrick JL. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65-95. DOI:

Lozano-García S, Caballero M, Ortega-Guerrero B, Sosa-Nájera S. 2019. Insights into the Holocene Environmental History of the Highlands of Central Mexico. In: Torrescano-Valle N, Islebe G, Roy P, eds. The Holocene and Anthropocene Environmental History of Mexico, A Paleocological approach on Mesoamerica. Switzerland: Springer Nature, pp. 97-114. DOI:

Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC. 2015. Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Belt. Journal of Biogeography 42: 1586-1600. DOI:

Metcalfe SE, O’Hara SL, Caballero M, Davies SJ. 2000. Records of Late Pleistocene-Holocene climatic change in Mexico-a review. Quaternary Science Reviews 19: 699-721.

Miller MP, Bellinger MR, Forsman ED, Haig SM. 2006. Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States. Molecular Ecology 15: 145-159. DOI:

Molseed E. 1970. The genus of Tigridia (Iridaceae) of Mexico and Central America. Publications in botany 54. USA: University of California Publications in Botany.

Moreno-Letelier A, Piñero D. 2009. Phylogeographic structure of Pinus strobiformis Engelm. across the Chihuahuan Desert filter-barrier. Journal of Biogeography 36: 121-131. DOI:

Morrone JJ. 2019. Regionalización biogeográfica y evolución biótica de México: encrucijada de la biodiversidad del Nuevo Mundo. Revista Mexicana de Biodiversidad 90: e902980. DOI:

Morrone JJ, Escalante T, Rodríguez-Tapia G. 2017. Mexican biogeographic provinces: Map and shapefiles. Zootaxa 4277: 277-279. DOI:

Müller J, Müller K, Neinhuis C, Quandt D. 2020. PhyDE®-Phylogenetic Data Editor. (accessed July 28, 2019).

Munguía-Lino G. 2016. Biogeografía cladística de la tribu Tigridieae (Iridaceae) en Norteamérica. PhD Thesis. Universidad de Guadalajara.

Munguía-Lino G, Vargas-Amado G, Vázquez-García LM, Rodríguez A. 2015. Riqueza y distribución geográfica de la tribu Tigridieae (Iridaceae) en Norteamérica. Revista Mexicana de Biodiversidad 86: 80-98. DOI:

Munguía-Lino G, Vargas-Ponce O, Rodríguez A. 2017. Tigridieae (Iridaceae) in North America: floral diversity, flower preservation methods and keys for the identification of genera and species. Botanical Sciences 95: 473-502. DOI:

Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distribution. Ecological Modelling 190: 231-259. DOI:

Pons P, Petit RJ. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237-1245. DOI:

Posada D. 2008. jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25: 1253-1256. DOI:

Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldså J. 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365: 1108-1113. DOI:

Ravenna PF. 1977. Neotropical species threatened and endangered by human activity in the Iridaceae, Amaryllidaceae and allied bulbous families. In: Prance GT, Elias TS, eds. Extinction is Forever. New York: New York Botanical Garden, pp. 257-266.

Rodríguez A. 1999. Molecular and morphological systematics of the “Tiger-flower” group (tribe Tigridieae: Iridaceae), biogeography and evidence for the adaptive radiation of the subtribe Tigridiinae. PhD Thesis. University of Wisconsin.

Rodríguez A, Sytsma KJ. 2006. Phylogenetics of the "Tiger-flower" group (Tigridieae: Iridaceae): molecular and morphological evidence. Aliso 22: 412-424. DOI:

Romero-Soler KJ, Ramírez-Morillo IM, Ruiz-Sanchez E, Hornung-Leoni CT, Carnevali G. 2021. Historical biogeography and comparative phylogeography of the Mexican genus Bakerantha (Bromeliaceae): insights into evolution and diversification. Botanical Journal of the Linnean Society boab084. DOI:

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539-542. DOI:

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34: 3299-3302. DOI:

Ruiz-Sanchez E, Specht CD. 2013. Influence of the geological history of the Trans-Mexican Volcanic Belt on the diversification of Nolina parviflora (Asparagaceae: Nolinoideae). Journal of Biogeography 40: 1336-1347. DOI:

Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA. 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7: 465-474. DOI:

Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275-288. DOI:

Shaw J, Shafer HL, Leonard OR, Kovach MJ, Schorr M, Morris AB. 2014. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperm: the tortoise and the hare IV. American Journal of Botany 101: 1987-2004. DOI:

Slatkin M. 1987. The average number of sites separating DNA sequences drawn from a subdivided population. Theoretical Population Biology 32: 42-49. DOI:

Sosa V, Loera I. 2017. Influence of current climate, historical climate stability and topography on species richness and endemism in Mesoamerican geophyte plants. Peer J 5: e3932. DOI:

Sosa V, Ruiz-Sanchez E, Rodriguez-Gomez FC. 2009. Hidden phylogeographic complexity in the Sierra Madre Oriental: the case of the Mexican tulip poppy Hunnemannia fumariifolia (Papaveraceae). Journal of Biogeography 36: 18-27. DOI:

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016. DOI:

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. DOI:

Thiers B. 2019. Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. (accessed July 28, 2019).

Ulloa C, Acevedo-Rodríguez P, Beck S, Belgrano MJ, Bernal R, Berry PE, Brako L, Celis M, Davidse G, Forzza RC, Gradstein SR, Hokche O, León B, León-Yánez S, Magill RE, Neill DA, Nee M, Raven PH, Stimmel H, Strong MT, Villaseñor JL, Zarucchi JL, Zuloaga FO, Jørgensen PM. 2017. An integrated assessment of the vascular plant species of the Americas. Science 358: 1614-1617. DOI:

Villaseñor JL. 2016. Check list of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559-902. DOI:

Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences 84: 9054-9058. DOI:

Zhang G, Wang Z, Wu H, Sun M. 2020. Chloroplast phylogeography of Iris dichotoma (Iridaceae), a widespread herbaceous species in East Asia. Nordic Journal of Botany 38: e02888. DOI:

Zhang G, Han Y, Wang H, Wang Z, Xiao H, Sun M. 2021. Phylogeography of Iris loczyi (Iridaceae) in Qinghai-Tibet Plateau revealed by chloroplast DNA and microsatellite markers. AoB PLANTS. DOI:

Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis. University of Texas.

How to Cite
López-Pérez, J. D., Rodríguez, A., Ruiz-Sanchez, E., Zamora-Tavares, P., & Munguía-Lino, G. (2022). Phylogeography of Tigridia durangensis (Tigridieae: Iridaceae), an endemic species of the Mexican Transition Zone. Botanical Sciences, 100(4), 1040-1057.