Phylogeography of Tigridia durangensis (Tigridieae: Iridaceae), an endemic species of the Mexican Transition Zone

  • Jorge David López-Pérez Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco http://orcid.org/0000-0003-0030-0495
  • Aarón Rodríguez Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco http://orcid.org/0000-0003-1805-7403
  • Eduardo Ruiz-Sanchez Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco http://orcid.org/0000-0002-7981-4490
  • Pilar Zamora-Tavares Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco http://orcid.org/0000-0002-3202-7334
  • Guadalupe Munguía-Lino Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco https://orcid.org/0000-0003-4101-8576
keywords: Endemic, genetic structure, phylogeographic structure, Sierra Madre Occidental, Transmexican Volcanic Belt

Abstract

Background: The topographic and climatic diversity of the Mexican Transition Zone (MTZ) has favored species richness, disjunctions and endemism. Tigridia durangensis is an endemic geophyte with disjunct distribution in the MTZ.

Questions and / or Hypotheses: What is the genetic diversity of Tigridia durangensis? Does it have genetic and phylogeographic structure? Were there any changes in its demographic history? Did the Quaternary climatic oscillations affect its area of distribution?

Methods: The cpDNA regions ndhF-rpL32, rpL32-trnL, and 3´trnV-ndhC of 55 individuals from 10 populations were sequenced. The genetic diversity and the genetic structure were estimated with Hd, π and FST. The parameters GST and NST determined the phylogeographic structure. The genealogical relationships were inferred with a haplotype net. Phylogenetic hypotheses were generated with Bayesian inference and Maximum likelihood. The demographic history was determined by means of neutrality tests, analyses of mismatch distribution (AMD) and Bayesian skyline plot. The paleodistribution was estimated with ecological niche models (ENMs).

Results: Tigridia durangensis showed genetic and phylogeographic structure. Nine haplotypes were identified; H1 and H2-H9 formed two intraspecific lineages. The neutrality tests were not significant. The AMD plot was congruent with the haplotype net. Tigridia durangensis experienced a bottleneck in the recent past and the ENMs displayed a disjunct distribution in all scenarios.

Conclusions: In Tigridia durangensis, the bottleneck and the interruption of the gene flow between the haplogroups might have been associated with orogenic processes and volcanism of the Transmexican Volcanic Belt.

Downloads

Download data is not yet available.

Author Biography

Guadalupe Munguía-Lino, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco

Instituto de Botánica de la Universiad de Guadalajara. 

Investigación en Biogeografía de Iridaceae y plantas monocotiledoneas con potencial de uso

Phylogeography of <em>Tigridia durangensis</em> (Tigridieae: Iridaceae), an endemic species of the Mexican Transition Zone

References

Anguiano-Constante MA, Zamora-Tavares P, Ruiz-Sanchez E, Dean E, Rodríguez A, Munguía-Lino G. 2021. Population differentiation and phylogeography in Lycianthes moziniana (Solanaceae: Capsiceae), a perennial herb endemic to the Mexican Transition Zone. Biological Journal of the Linnean Society 132: 359-373. DOI: https://doi.org/10.1093/biolinnean/blaa198

Avise JC. 2000. Phylogeography: the history and formation of species. Inglaterra, Londres: President and Fellows of Harvard College. ISBN: 0-674-66638-0

Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I. 2013. BLAST: a more efficient report with usability improvements. Nucleic Acids Research 41: W29-W33. DOI: https://doi.org/10.1093/nar/gkt282

Caballero M, Lozano-García S, Vázquez-Selem L, Ortega B. 2010. Evidencias de cambio climático y ambiental en registros glaciales y en cuencas lacustres del centro de México durante el último máximo glacial. Boletín de la Sociedad Geológica Mexicana 62: 359-377.

Chauveau O, Eggers L, Souza-Chies TT, Nadot S. 2012. Oil-producing flowers within the Iridoideae (Iridaceae): evolutionary trends in the flowers of the New World genera. Annals of Botany 110: 713-729. DOI: https://doi.org/10.1093/aob/mcs134

Cruden RW. 1968. Three new species of Tigridia (Iridaceae) from Mexico. Brittonia 20: 314-320. DOI: https://doi.org/10.2307/2805688

Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E. 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad 85: 189-199. DOI: https://doi.org/10.7550/rmb.36723

Domínguez-Domínguez O, Vázquez-Domínguez E. 2009. Filogeografía: aplicaciones en taxonomía y conservación. Animal Biodiversity and Conservation 32: 59-70.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Dunpaloup I, Schneider S, Excoffier L. 2002. A simulated annealing approach to define the genetic structure of population. Molecular Ecology 11: 2571-2581. DOI: https://doi.org/10.1046/j.1365-294X.2002.01650.x

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. DOI: https://doi.org/10.1093/nar/gkh340

Espejo-Serna A, López-Ferrari AR. 1996. Comentarios florístico-ecológicos sobre las iridáceas mexicanas. Acta Botanica Mexicana 34: 25-47. DOI: https://doi.org/10.21829/abm34.1996.948

Espejo-Serna A, López-Ferrari AR. 1998. Iridaceae. Flora de Veracruz 105: 1-58.

Espejo-Serna A, López-Ferrari AR, Ceja J. 2010. Iridaceae. Flora del bajío y de regiones adyacentes 166: 1-81.

Esri [Environmental Systems Research Institute]. 2010. ArcGIS 10.0. Redlands, California.

Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 5645-567. DOI: https://doi.org/10.1111/j.1755-0998.2010.02847.x

Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. DOI: https://doi.org/10.1093/genetics/131.2.479

Ferrari L, Orozco-Esquivel T, Manea V, Manea M. 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522-523: 122-149. DOI: https://doi.org/10.1016/j.tecto.2011.09.018

Ferrusquía-Villafranca I. 1993. Geología de México: una sinopsis. In: Ramamoorthy TP, Bye R, Lot A, Fa M, eds. Diversidad biológica de México: orígenes distribución. DF: Instituto de Biología, pp. 3-107. ISBN: 968-36-6588-8

Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315. DOI: https://doi.org/10.1002/joc.5086

Flores-Tolentino M, Ortiz E, Villaseñor JL. 2019. Ecological niche models as a tool for estimating the distribution of plant communities. Revista Mexicana de Biodiversidad 90: e902829. DOI: https://doi.org/10.22201/ib.20078706e.2019.90.2829

Fu XY. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.

Funk VA, Gostel M, Devine A, Kelloff CL, Wurdack K, Tuccinardi C, Radosavljevic A, Peters M, Coddington J. 2017. Guidelines for collection vouchers and tissues intended for genomic work (Smithsonian Institution): Botany Best Practices. Biodiversity Data Journal 5: e11625. DOI: https://doi.org/10.3897/BDJ.5.e11625

Goldblatt P. 2015. New and Validated Combinations in Tigridia (Iridaceae: Tigridieae). Novon: A Journal for Botanical Nomenclature 24: 14-15. DOI: https://doi.org/10.3417/2014016

Goldblatt P, Manning JC. 2008. The Iris Family: Natural History and Classification. Oregon: Timber Press. ISBN: 978-088-1928-97-6

Goldblatt P, Rodríguez A, Powell MP, Davies TJ, Manning JC, Van der Bank M, Savolainen V. 2008. Iridaceae ‘out of Australasia’? Phylogeny, biogeography, and divergence time based on plastid DNA sequences. Systematic Botany 33: 495-508. DOI: https://doi.org/10.1600/036364408785679806

Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L. 2005. Petrogénesis ígnea de la Faja Volcánica Transmexicana. Boletín de La Sociedad Geológica Mexicana 57: 227-283. DOI: https://doi.org/10.18268/bsgm2005v57n3a2

Gong W, Chen C, Dobeš C, Fu C-X, Koch MA. 2008. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution 48: 1094-1105. DOI: https://doi.org/10.1016/j.ympev.2008.05.003

Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Martínez JF, Molina-Freaner F, Pérez-Farrera MA, Vovides AP, Matsuki Y, Suyama Y, Ohsawa TA, Watano Y, Kajita T. 2018. The phylogeography of the cycad genus Dioon (Zamiaceae) clarifies its Cenozoic expansion and diversification in the Mexican transition zone. Annals of Botany 121: 535-548. DOI: https://doi.org/10.1093/aob/mcx165

Halffter G. 1987. Biogeography of the montane entomofauna of Mexico and Central America. Annual Review of Entomology 32: 95-114. DOI: https://doi.org/10.1146/annurev.en.32.010187.000523

Halffter G, Morrone JJ. 2017. An analytical review of Halffter’s Mexican transition zone, and its relevance for evolutionary biogeography, ecology and biogeographical regionalization. Zootaxa 4226: 1-46. DOI: https://doi.org/10.11646/zootaxa.4226.1.1

Harpending HC. 1994. Signature of ancient populations growth in a low-resolutions mitochondrial DNA mismatch distribution. Human Biology 66: 591-600.

Hermogenes De Mendonça L, Ebach MC. 2020. A review of transition zones in biogeographical classification. Biological Journal of the Linnean Society 131: 717-736. DOI: https://doi.org/10.1093/biolinnean/blaa120

Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913. DOI: https://doi.org/10.1038/35016000

Hoffmann FG, Owen JG, Baker RJ. 2003. mtDNA perspective of chromosomal diversification and hybridization in Peters’ tent?making bat (Uroderma bilobatum: Phyllostomidae). Molecular Ecology 12: 2981-2993. DOI: https://doi.org/10.1046/j.1365-294x.2003.01959.x

Horne JB, van Herwerden L, Choat JH, Robertson DR. 2008. High population connectivity across the Indo-Pacific: Congruent lack of phylogeographic structure in three reef fish congeners. Molecular Phylogenetics and Evolution 49: 629-638. DOI: https://doi.org/10.1016/j.ympev.2008.08.023

Howard CC, Landis JB, Beaulieu JM, Cellinese N. 2020. Geophytism in monocots leads to higher rates of diversification. New Phytologist 225: 1023-1032. DOI: https://doi.org/10.1111/nph.16155

Jetz W, Rahbek C, Colwell RK. 2004. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters 7: 1180-1191. DOI: https://doi.org/10.1111/j.1461-0248.2004.00678.x

Jin J, Yang J. 2020. BDcleaner: a workflow for cleaning taxonomic and geographic errors in occurrence data archived in biodiversity databases. Global Ecology and Conservation 21: e00852. DOI: https://doi.org/10.1016/j.gecco.2019.e00852

Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110-1116. DOI: https://doi.org/10.1111/2041-210X.12410

Loveless MD, Hamrick JL. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65-95. DOI: https://doi.org/10.1146/annurev.es.15.110184.000433

Lozano-García S, Caballero M, Ortega-Guerrero B, Sosa-Nájera S. 2019. Insights into the Holocene Environmental History of the Highlands of Central Mexico. In: Torrescano-Valle N, Islebe G, Roy P, eds. The Holocene and Anthropocene Environmental History of Mexico, A Paleocological approach on Mesoamerica. Switzerland: Springer Nature, pp. 97-114. DOI: https://doi.org/10.1007/978-3-030-31719-5_6

Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC. 2015. Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Belt. Journal of Biogeography 42: 1586-1600. DOI: https://doi.org/10.1111/jbi.12546

Metcalfe SE, O’Hara SL, Caballero M, Davies SJ. 2000. Records of Late Pleistocene-Holocene climatic change in Mexico-a review. Quaternary Science Reviews 19: 699-721.

Miller MP, Bellinger MR, Forsman ED, Haig SM. 2006. Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States. Molecular Ecology 15: 145-159. DOI: https://doi.org/10.1111/j.1365-294x.2005.02765.x

Molseed E. 1970. The genus of Tigridia (Iridaceae) of Mexico and Central America. Publications in botany 54. USA: University of California Publications in Botany.

Moreno-Letelier A, Piñero D. 2009. Phylogeographic structure of Pinus strobiformis Engelm. across the Chihuahuan Desert filter-barrier. Journal of Biogeography 36: 121-131. DOI: https://doi.org/10.1111/j.1365-2699.2008.02001.x

Morrone JJ. 2019. Regionalización biogeográfica y evolución biótica de México: encrucijada de la biodiversidad del Nuevo Mundo. Revista Mexicana de Biodiversidad 90: e902980. DOI: http://dx.doi.org/10.22201/ib.20078706e.2019.90.2980

Morrone JJ, Escalante T, Rodríguez-Tapia G. 2017. Mexican biogeographic provinces: Map and shapefiles. Zootaxa 4277: 277-279. DOI: http://doi.org/10.11646/zootaxa.4277.2.8

Müller J, Müller K, Neinhuis C, Quandt D. 2020. PhyDE®-Phylogenetic Data Editor. http://www.phyde.de/index.html (accessed July 28, 2019).

Munguía-Lino G. 2016. Biogeografía cladística de la tribu Tigridieae (Iridaceae) en Norteamérica. PhD Thesis. Universidad de Guadalajara.

Munguía-Lino G, Vargas-Amado G, Vázquez-García LM, Rodríguez A. 2015. Riqueza y distribución geográfica de la tribu Tigridieae (Iridaceae) en Norteamérica. Revista Mexicana de Biodiversidad 86: 80-98. DOI: http://dx.doi.org/10.7550/rmb.44083

Munguía-Lino G, Vargas-Ponce O, Rodríguez A. 2017. Tigridieae (Iridaceae) in North America: floral diversity, flower preservation methods and keys for the identification of genera and species. Botanical Sciences 95: 473-502. DOI: https://doi.org/10.17129/botsci.727

Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distribution. Ecological Modelling 190: 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pons P, Petit RJ. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237-1245. DOI: https://doi.org/10.1093/genetics/144.3.1237

Posada D. 2008. jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25: 1253-1256. DOI: https://doi.org/10.1093/molbev/msn083

Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, Nogues-Bravo D, Whittaker RJ, Fjeldså J. 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365: 1108-1113. DOI: https://doi.org/10.1126/science.aax0149

Ravenna PF. 1977. Neotropical species threatened and endangered by human activity in the Iridaceae, Amaryllidaceae and allied bulbous families. In: Prance GT, Elias TS, eds. Extinction is Forever. New York: New York Botanical Garden, pp. 257-266.

Rodríguez A. 1999. Molecular and morphological systematics of the “Tiger-flower” group (tribe Tigridieae: Iridaceae), biogeography and evidence for the adaptive radiation of the subtribe Tigridiinae. PhD Thesis. University of Wisconsin.

Rodríguez A, Sytsma KJ. 2006. Phylogenetics of the "Tiger-flower" group (Tigridieae: Iridaceae): molecular and morphological evidence. Aliso 22: 412-424. DOI: https://doi.org/10.5642/aliso.20062201.33

Romero-Soler KJ, Ramírez-Morillo IM, Ruiz-Sanchez E, Hornung-Leoni CT, Carnevali G. 2021. Historical biogeography and comparative phylogeography of the Mexican genus Bakerantha (Bromeliaceae): insights into evolution and diversification. Botanical Journal of the Linnean Society boab084. DOI: https://doi.org/10.1093/botlinnean/boab084

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539-542. DOI: https://doi.org/10.1093/sysbio/sys029

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34: 3299-3302. DOI: https://doi.org/10.1093/molbev/msx248

Ruiz-Sanchez E, Specht CD. 2013. Influence of the geological history of the Trans-Mexican Volcanic Belt on the diversification of Nolina parviflora (Asparagaceae: Nolinoideae). Journal of Biogeography 40: 1336-1347. DOI: https://doi.org/10.1111/jbi.12073

Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA. 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7: 465-474. DOI: https://doi.org/10.1046/j.1365-294x.1998.00318.x

Shaw J, Lickey EB, Schilling EE, Small RL. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275-288. DOI: https://doi.org/10.3732/ajb.94.3.275

Shaw J, Shafer HL, Leonard OR, Kovach MJ, Schorr M, Morris AB. 2014. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperm: the tortoise and the hare IV. American Journal of Botany 101: 1987-2004. DOI: https://doi.org/10.3732/ajb.1400398

Slatkin M. 1987. The average number of sites separating DNA sequences drawn from a subdivided population. Theoretical Population Biology 32: 42-49. DOI: https://doi.org/10.1016/0040-5809(87)90038-4

Sosa V, Loera I. 2017. Influence of current climate, historical climate stability and topography on species richness and endemism in Mesoamerican geophyte plants. Peer J 5: e3932. DOI: https://doi.org/10.7717/peerj.3932

Sosa V, Ruiz-Sanchez E, Rodriguez-Gomez FC. 2009. Hidden phylogeographic complexity in the Sierra Madre Oriental: the case of the Mexican tulip poppy Hunnemannia fumariifolia (Papaveraceae). Journal of Biogeography 36: 18-27. DOI: https://doi.org/10.1111/j.1365-2699.2008.01957.x

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016. DOI: https://doi.org/10.1093/ve/vey016

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. DOI: https://doi.org/10.1093/genetics/123.3.585

Thiers B. 2019. Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/ (accessed July 28, 2019).

Ulloa C, Acevedo-Rodríguez P, Beck S, Belgrano MJ, Bernal R, Berry PE, Brako L, Celis M, Davidse G, Forzza RC, Gradstein SR, Hokche O, León B, León-Yánez S, Magill RE, Neill DA, Nee M, Raven PH, Stimmel H, Strong MT, Villaseñor JL, Zarucchi JL, Zuloaga FO, Jørgensen PM. 2017. An integrated assessment of the vascular plant species of the Americas. Science 358: 1614-1617. DOI: https://doi.org/10.1126/science.aao0398

Villaseñor JL. 2016. Check list of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559-902. DOI: https://dx.doi.org/10.1016/j.rmb.2016.06.017

Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences 84: 9054-9058. DOI: https://dx.doi.org/10.1073/pnas.84.24.9054

Zhang G, Wang Z, Wu H, Sun M. 2020. Chloroplast phylogeography of Iris dichotoma (Iridaceae), a widespread herbaceous species in East Asia. Nordic Journal of Botany 38: e02888. DOI: https://doi.org/10.1111/njb.02888

Zhang G, Han Y, Wang H, Wang Z, Xiao H, Sun M. 2021. Phylogeography of Iris loczyi (Iridaceae) in Qinghai-Tibet Plateau revealed by chloroplast DNA and microsatellite markers. AoB PLANTS. DOI: https://doi.org/10.1093/aobpla/plab070

Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis. University of Texas.

Published
2022-06-13
How to Cite
López-Pérez, J. D., Rodríguez, A., Ruiz-Sanchez, E., Zamora-Tavares, P., & Munguía-Lino, G. (2022). Phylogeography of Tigridia durangensis (Tigridieae: Iridaceae), an endemic species of the Mexican Transition Zone. Botanical Sciences, 100(4), 1040-1057. https://doi.org/10.17129/botsci.3003
Section
SYSTEMATICS / SISTEMÁTICA