Nutritional and phytochemical characterization of leaves, flower, and fruits of Prosopis laevigata

keywords: Composition, native mesquite, primary metabolites, secondary metabolites

Abstract

Background: The sustainable use of native plants for human consumption and their incorporation as an ingredient in new foods is important. The fruits of Prosopis laevigata have been used occasionally for human consumption; however, they can constitute a sustainable source of nutrients and secondary metabolites.

Questions and / or Hypotheses: Which is the nutrient content and phytochemical composition of leaves, flowers, and fruits of Prosopis leavigata?

Study species / Data description / Mathematical model: Prosopis laevigata, Fabaceae family, reproductive parts (flower and fruit) and vegetative part (leaf).

Site and years of study: Portugalejo de los Romanes, Lagos de Moreno, Jalisco. From 2018-2020

Methods:  The soluble solids, pH, acidity, and maturity index were determined in fruit. The nutrient content of the leaf, flower and fruit was evaluated; as well as macro and microelements in leaf, fruit and seed were determined; while soluble phenols, condensed tannins, hydrolyzable polyphenols, and total alkaloids were determined in leaf, flower and fruit.

Results: There were significant differences in the nutrient content between organs. The content of phenolic compounds and alkaloids were highest in flower. The phenolic compounds with highest concentration in flower were the 4-hydroxybenzoic, r-coumaric and gallic acids, in leaf 4-hydroxybenzoic, chlorogenic and r-coumaric acids, and in fruit gallic, cinnamic and r-coumaric acids.

Conclusions:  The content of nutrients, minerals and phytochemicals allows to conclude that this species can constitute a source of primary metabolites, minerals, and functional compounds for human or animal consumption, as well as for obtaining by-products.

Downloads

Download data is not yet available.

Author Biographies

Lilia García-Azpeitia, Instituto Tecnológico José Mario Molina Pasquel y Henríquez Unidad Académica Lagos de Moreno, Jalisco

Ingeniería Bioquimica y Maestría en Ciencias  por el Instituto Tecnologico de Tepic. Profesor de Tiempo completo (docente-investigador) en el Instituto Tecnologcio José Mario Molina Pasquel y Henríquez Unidad Académica de Lagos de Moreno desde 2008 a la fecha; coordinador de un cuerpo académico en formación y Perfil PROMEP.

Estudiante del Doctorado en Ciencia y Tecnologia, en el área de biomédica en el Centro Universitario de los Lagos de la Universidad de Guadalajara.  

Efigenia Montalvo-González, Instituto Tecnológico de Tepic, Tepic, Nayarit

Egresada de la Carrera de Ingeniería Bioquímica y la Maestría en Ciencias en Alimentos por parte del Instituto Tecnológico de Tepic, realizó su Doctorado en Ciencias en Alimentos en el Instituto Tecnológico de Veracruz. Forma parte del Sistema Nacional de Investigadores Nivel 2, Vicepresidenta de la Sociedad Mexicana de Anonáceas 2012-2016 y fue Premio Nacional en Ciencia y Tecnología de Alimentos en 2013.Su área de interés es: Conservación poscosecha de frutas y hortalizas/Productos mínimamente procesados de origen vegetal/Tecnología de alimentos funcionales/ Estudio de metabolitos secundarios de alimentos de interés agroindustrial y de salud.
La línea de investigación en la que se desempeña es la Conservación e Industrialización de Frutas y Hortalizas.

Sofía Loza-Cornejo, Centro Universitario de los Lagos de la UdG, Lagos de Moreno, Jalisco

Licenciada en Biología por la Facultad de Ciencias de la Universidad de Guadalajara, Maestra en Ciencias (Botánica), Colegio De Postgraduados. Doctora en Ciencias (Botánica), Colegio de Postgraduados.
Labora como profesor investigador desde 2008 en el Centro Universitario de los Lagos de la Universidad de Guadalajara, actualemente es miembro del Sistema nacional de Investigadores Nivel 1 y Perfil PROMEP.
Su línea de investigación es Anatomía y Fisiología Vegetal

Nutritional and phytochemical characterization of leaves, flower, and fruits of <em>Prosopis laevigata</em>

References

Aguilar-Hernández G, García-Magaña ML, Vivar-Vera MA, Sáyago-Ayerdi SG, Sánchez-Burgos JA, Morales-Castro J, Anaya-Esparza LM, Montalvo-González E. 2019. Optimization of Ultrasound-assisted extraction of phenolic compounds from Annona muricata by-products and pulp. Molecules 24: 904-919. DOI: https://doi.org/10.3390/molecules24050904

Álvarez MV, Cabred S, Ramirez CL, Fanovichb M. 2019. Valorization of an agroindustrial soybean residue by supercritical fluid extraction of phytochemical compounds. The Journal of Supercritical Fluids 143: 90-96. DOI: https://doi.org/10.1016/j.supflu.2018.07.012

AOAC [Association of Officiating Analytical Chemists]. 2005. Official method of analysis of AOAC international. 15th Edition. Washington, DC. ISBN: 0935554-77-3

De Souza AM, Silva AT, Felix-Silva A, Campeche DFB, Melo JFB, Vidal LVO. 2019. Mesquite bean (Prosopis juliflora) meal in diets of Nile tilapia (Oreochromis niloticus): Nutritional value, growth, physiological responses and health. Aquaculture Research 50: 49-62. DOI: https://doi.org/10.1111/are.13867

Delgado-Altamirano R, Monzote L, Piñón-Tápanes A, Vibrans H, Rivero-Cruz JF, Ibarra-Alvarado C, Rojas-Molina A. 2017. In vitro antileishmanial activity of Mexican medicinal plants. Heliyon 3: 1-19. DOI: https://doi.org/10.1016/j.heliyon.2017.e00394

Delgado-Núñez EJ, Zamilpa A, González-Cortazar M, Olmedo-Juárez A, Cardoso-Taketa A, Sanchez-Mendoza E, Tapia Mauri D, Salinas-Sánchez DO, Mendoza-de Gives P. 2020. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 10: 773. DOI: https://doi.org/10.3390/biom10050773

Díaz-Batalla L, Hernández-Uribe JP, Gutiérrez-Dorado R, Téllez-Jurado A, Castro-Rosas J, Pérez-Cadena R, Gómez-Aldapa CA. 2018. Nutritional characterization of Prosopis laevigata legume tree (mesquite) seed flour and the effect of extrusion cooking on its bioactive components. Foods 7: 2-9. DOI: https://doi.org/10.3390/foods7080124

Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist 186: 593-608. DOI: https://doi.org/10.1111/j.1469-8137.2010.03214.x

Fontana ML, Pérez VR, Luna CV. 2020. Efecto de la procedencia sobre el comportamiento productivo de Prosopis alba en plantación. Acta Agronómica 69: 68-74. DOI: http://dx.doi.org/10.15446/acag.v69n1.79711

Gallegos-Infante JA, Rocha-Guzmán NE, González-Laredo RF, Garcia-Casas MA. 2013. Efecto del procesamiento térmico sobre la capacidad antioxidante de pinole a base de vainas de mezquite (Prosopis laevigata). CyTA - Journal of Food 11: 162-170. DOI: https://doi.org/10.1080/19476337.2012.712057

García EM, Cherry N, Lambert BD, Muir JP, Nazareno MA, Arroquy JI. 2017. Exploring the biological activity of condensed tannins and nutritional value of tree and shrub leaves from native species of the Argentinean Dry Chaco. Journal of the Science of Food and Agriculture 97: 5021-5027. DOI: https://doi.org/10.1002/jsfa.8382

García-Andrade M, González-Laredo RF, Rocha-Guzmán NE, Gallegos-Infante JA, Rosales-Castro M, Medina-Torres L. 2013. Mesquite leaves (Prosopis laevigata), a natural resource with antioxidant capacity and cardioprotection potential. Industrial Crops and Products 44: 336– 342. DOI: https://doi.org/10.1016/j.indcrop.2012.11.030

García-López J, Durán-García HM, De Nova JA, Álvarez-Fuentes G, Pinos Rodríguez JM, Lee- Rangel HA, López-Aguirre S, Ruiz-Tavares R, Rendón-Huerta J, Vicente-Martínez JG, Salinas-Rodríguez M. 2019. Producción y contenido nutrimental de vainas de tres variantes de mezquite (Prosopis laevigata) en el Antiplano potosino, México. Agrociencia 53: 821-831. DOI: https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1846

García-Monjaras S, Santos-Díaz RE, Flores-Najera MJ, Cuevas-Reyes V, Meza-Herrera CA, Mellado M, Chay-Canul AJ, Rosales-Nieto CA. 2021. Diet selected by goats on xerophytic shrubland with different milk yield potential. Journal of Arid Environments 186: 104429. DOI: https://doi.org/10.1016/j.jaridenv.2020.104429

García-Sánchez R, Camargo-Ricalde SL, García Moya E, Luna-Cavazos M, Romero-Manzanares A, Montaño NM. 2012. Prosopis laevigata and Mimosa biuncifera (Leguminosae), jointly influence plant diversity and soil fertility of a Mexican semiarid ecosystem. Revista de Biología Tropical 60: 87-103.

Garg D, Chakraborty S, Gokhale JS. 2021. Optimizing the extraction of protein from Prosopis cineraria seeds using response surface methodology and characterization of seed protein concentrate. LWT Food Science and Technology 117: 108630. DOI: https://doi.org/10.1016/j.lwt.2019.108630

Godínez-Álvarez H, Jiménez M, Mendoza M, Pérez F, Roldán P, Ríos-Casanova L, Lira R. 2008. Densidad, estructura poblacional, reproducción y supervivencia de cuatro especies de plantas útiles en el Valle de Tehuacán, México. Revista Mexicana de Biodiversidad 79: 393- 403.

González-Barron U, Dijkshoorn R, Maloncy M, Finimundy T, Calhelha RC, Pereira C, Stojkovi? D, Sokovi? M, Ferreira ICFR; Barros L, Cadavez V. 2020. Nutritive and bioactive properties of mesquite (Prosopis pallida) flour and its technological performance in breadmaking. Foods 9: 1-25. DOI: https://doi.org/10.3390/foods9050597

González-Montemayor ÁM, Flores-Gallegos AC, Contreras-Esquivel, JC, Solanilla-Duque JF, Rodríguez-Herrera R. 2019. Prosopis spp. functional activities and its applications in bakery products. Trends in Food Science & Technology 94: 12-19. DOI: https://doi.org/10.1016/j.tifs.2019.09.023

González-Quijano GK, Arrieta-Báez D, Dorantes-Álvarez L, Aparicio-Ozones G, Guerrero Legarreta L. 2019. Efecto del método de extracción en el contenido de fitoestrógenos y principales fenólicos en los extractos de la vaina de mezquite (Prosopis sp.). Revista Mexicana de Ingeniería Química 18: 303-312. DOI: https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Gonzalez

Grether R. 2007. Prosopis L. emend. Burkart, familia Leguminosae. Flora del bajío y de las regiones adyacentes. 150: 202-209.

Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE. 2002. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. Journal of Agricultural and Food Chemistry 50, 1785–1790. https://doi.org/10.1021/jf0111155

Hassan SM, Taha AM, Eldahshan OA, Sayed AA, Salem AM. 2019. Modulatory effect of Prosopis juliflora leaves on hepatic fibrogenic and fibrolytic alterations induced in rats by thioacetamide. Biomedicine & Pharmacotherapy 115: 108788. DOI: https://doi.org/10.1016/j.biopha.2019.108788

Henciya S, Seturaman P, James AR, Tsai YH, Nikam R, Wu YC, Dahms HU, Chang FR. 2017. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa). Journal of Food and Drug Analysis 25: 187-196. DOI: https://doi.org/10.1016/j.jfda.2016.11.001

Kader AA. 1992. Postharvest biology and technology: an overview. In: Kader AA. eds. Postharvest Technology of Horticultural Crops. California, USA: Universidad de California, pp. 39-48.

Katz E, Riov J, Weiss D, Goldschmidt EE. 2005. The climacteric-like behavior of young, mature and wounded citrus leaves. Journal of Experimental Botany 56: 1359-1367. DOI: https://doi.org/10.1093/jxb/eri137

Luo Y, Peng Q, He M, Zhang M, Liu Y, Gong Y, Eziz A, Li K, Han W. 2020. N, P and K stoichiometry and resorption efficiency of nine dominant shrub species in the deserts of Xinjiang, China. Ecological Research 35: 625-637. DOI: http://dx.doi.org/10.1111/1440-1703.12111

Maciel-De Melo CA, Maciel-De Melo, Ferreira da Silva AV, Da Silva-Neto GJ, Turola-Barbi RC, Ikeda M, Benatti-Silva G, Joy-Steel C, Soares-Da Silva O. 2022. Mesquite (Prosopis juliflora) grain flour: New ingredient with bioactive, nutritional and physical-chemical properties for food applications. Future Foods 5: 100114 DOI: https://doi.org/10.1016/j.fufo.2022.100114

Mendez-Estrella R, Romo-León JR, Castellanos AE. 2017. Mapping changes in carbon storage and productivity services provided by riparian ecosystems of semi-arid environments in northwestern Mexico. International Journal of Geo-Information 6: 298-325. DOI: https://doi.org/10.3390/ijgi6100298

Millar KA, Gallagher E, Burke R, McCarthy S, Barry-Ryan C. 2019. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. Journal of Food Composition and Analysis 82: 1-8 DOI: https://doi.org/10.1016/j.jfca.2019.103233

Montreau F. 1972. Sur le dosage des composés phénoliques totaux dans les vins par la methode Folin-Ciocalteau. Connaiss Vigne Vin 24, 397-404.

Muhammad I, Muhammad N, Amanat A, Viqar UA, Munawwer R. 2013. Phytochemical analyses of Prosopis juliflora (Swartz) DC. Pakistan Journal of Botany 45: 2101-2104.

OCDE [Organización de Cooperación y Desarrollo]. 1998. Scheme for the application of international standards for fruit and vegetables. Guia De Pruebas Objetivas Para Determinar La Madurez De La Fruta. https://www.oecd.org/tad/code/32022743.pdf (Accessed 11.02.22).

Ontiveros-Rodríguez JC, Burgueño-Tapia E, Porras-Ramírez J, Joseph-Nathan P, Zepeda LG. 2018. Configurational study of an aporphine alkaloid from Annona purpurea. Natural Product Communications 13: 831-836. DOI: https://doi.org/10.1177/1934578X1801300711

O?Shea N, Arendt EK, Gallagher E. 2012. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Science & Emerging Technologies 16: 1-10. DOI: https://doi.org/10.1016/j.ifset.2012.06.002

Palacios RA. 2006. Los mezquites mexicanos: Biodiversidad y distribución geográfica. Boletín de la Sociedad Argentina de Botánica 41: 99-121.

Pena-Avelino L, Ceballos-Olvera I, Alva-Pérez J, Vicente J, Pinos-Rodríguez J. 2020. Effects of mesquite (Prosopis laevigata) pods as a potential feed material for kids. Veterinarni Medicina 65: 289-296. DOI: https://doi.org/10.17221/106/2019-VETMED

Peña-Avelino LY, Pinos-Rodríguez JM, Yáñez-Estrada L, Juárez Flores BI, Mejia R, Andrade-Zaldivar H. 2014. Chemical composition and in vitro degradation of red and white mesquite (Prosopis laevigata) pods. South African Journal of Animal Science 44: 298-306. DOI: https://doi.org/10.4314/sajas.v44i3.12

Pérez MJ, Rodriguez IF, Zampini IC, Cattaneo F, Mercado MI, Ponessa G, Isla MI. 2020. Prosopis nigra fruits waste characterization, a potential source of functional ingredients for food formulations. LWT Food Science and Technology 132: 109828. DOI: https://doi.org/10.1016/j.lwt.2020.109828

Puppo MA, Felker P. 2021. Prosopis as a Heat Tolerant Nitrogen Fixing Desert Food Legume. Prospects for Economic Development in Arid Lands. USA: Academic Press. ISBN: 9780128233207

Reed JD. 2001. Effects of Proanthocyanidins on digestion of fiber in forages. Journal of Range Management 54: 466-473. DOI: http://doi.org/10.2307/4003118

Rodríguez-Sauseda EN, Argentel-Martínez L, Morales Coronado D. 2019a. Water regime and gas exchange of Prosopis laevigata (Humb. & Bonpl. ex Willd.) M. C. Johnst. in two semi-arid ecosystems in southern Sonora. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25: 107-121. DOI: http://dx.doi.org/10.5154/r.rchscfa.2018.09.068

Rodríguez IF, Pérez MJ, Cattaneo F, Zampini IC, Cuello AS, Mercado MI, Ponessa G, Isla MI. 2019b. Morphological, histological, chemical, and functional characterization of Prosopis alba flours of different particle sizes. Food Chemistry 274: 583-591. DOI: https://doi.org/10.1016/j.foodchem.2018.09.024

Rossi CA, De León M, González GL, Pereyra AM. 2007. Presencia de metabolitos secundarios en el follaje de diez leñosas de ramoneo en el bosque xerofítico del Chaco árido argentino. Tropical and Subtropical Agroecosystems 7: 133-143.

Ruiz-Nieto JE, Hernández-Ruíz J, Hernández-Martín J, Mendoza-Carrillo J, Abraham-Juárez M, Isiordia Lachiga PM, Mireles-Arriaga AI. 2020. Mesquite (Prosopis spp.) tree as a feed resource for animal grouwth. Agroforestry Systems 94: 1139-1149. DOI: https://doi.org/10.1007/s10457-020-00481-x

Rzedowski J. 2006. Vegetación de México, Bosque espinoso, DF, México: Comisión Nacional para el conocimiento y uso de la biodiversidad (CONABIO). https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf (acceso diciembre 2, 2020).

Sharifi RJ, Kobarfard F, Ata A, Ayatollahi SA, Khosravi DN, Jugran AK, Tomas M, Capanoglu E, Matthews KR, Popovi? DJ, Kosti? A, Kamiloglu S, Sharopov F, Choudhary MI, Martins N. 2019. Prosopis plant chemical composition and pharmacological attributes: Targeting clinical studies from preclinical evidence. Biomolecules 9: 777. DOI: https://doi.org/10.3390/biom9120777

Sheng S, Li T, Liu RH. 2018. Corn phytochemicals and their health benefits. Food Science and Human Wellness 7: 185-195. DOI: https://doi.org/10.1016/j.fshw.2018.09.003

Soni LK, Dobhal MP, Arya D, Bhagour K, Parasher P, Gupta RS. 2018. In vitro and in vivo antidiabetic activity of isolated fraction of Prosopis cineraria against streptozotocin-induced experimental diabetes: A mechanistic study. Biomedicine & Pharmacotherapy 108: 1015-1021. DOI: https://doi.org/10.1016/j.biopha.2018.09.099

Stefaniak A, Grzeszczuk ME. 2019. Nutritional and biological value of five edible flower species. Notulae Botanicae Horti Agrobotanic Cluj-Napoca 47: 128-134. DOI: https://doi.org/10.15835/nbha47111136

Torabian S, Farhangi-Abriz S, Denton MD. 2019. Dotillage systems influence nitrogen fixation in legumes? A review. Soil and Tillage Research 185: 113-121. DOI: https://doi.org/10.1016/j.still.2018.09.006

Vilela AE, Ravetta DA. 2000. El efecto de la radiación sobre el crecimiento y la fisiología de las plántulas en cuatro especies de Prosopis L. (Mimosaceae). Journal of Arid Environments 44: 415-423. DOI: https://doi.org/10.1006/jare.1999.0604

Villagra PE, Vilela A, Giordano C, Álvarez JA. 2010. Ecophysiology of Prosopis species from the arid lands of Argentina: what do we know about adaptation to stressful environments? In: Ramawat K. eds. Desert Plants Biology and Biotechnology. Dordrecht: Springer Heidelberg, pp. 322-336. DOI: https://doi.org/10.1007/978-3-642-02550-1_15

Yeo HJ, Park CH, Park YE, Hyeon H, Kim JK, Lee SY, Park SU. 2021. Metabolic profiling and antioxidant activity during flower development in Agastache rugosa. Physiology and Molecular Biology of Plants 27: 445-455. DOI: https://doi.org/10.1007/s12298-021-00945-z

Zapata-Campos C, García-Martínez JE, Salinas-Chavira J, Ascacio-Valdés JA, Medina Morales MA, Mellado M. 2020. Chemical composition and nutritional value of leaves and pods of Leucaena leucocephala, Prosopis laevigata and Acacia farnesiana in a xerophilous shrubland. Emirates Journal of Food and Agriculture 32: 723-730. DOI: https://doi.org/10.9755/ejfa.2020.v32.i10.2148

Zhao N, Yu G, He N, Xia F, Wang Q, Wang R, Xu Z, Jia Y. 2016. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. Journal of Plant Research 129: 647-657. DOI: https://doi.org/10.1007/s10265-016-0805-4

Zlati? N, Jakovljevi? D, Stankovi? M. 2019. Temporal, plant part, and interpopulation variability of secondary metabolites and antioxidant activity of Inula helenium L. Plants 8: 179-189. DOI: https://doi.org/10.3390/plants8060179

Published
2022-06-23
How to Cite
García-Azpeitia, L., Montalvo-González, E., & Loza-Cornejo, S. (2022). Nutritional and phytochemical characterization of leaves, flower, and fruits of Prosopis laevigata. Botanical Sciences, 100(4), 1014-1024. https://doi.org/10.17129/botsci.3000
Section
PHYTOCHEMISTRY / FITOQUÍMICA