Analysis of the extranucleolar ribonucleoprotein particles of Cycas revoluta Thunb. (Cycadaceae) and Ceratozamia mexicana Brongn. (Zamiaceae)

keywords: Atomic force microscopy, cell nucleus, Cycads, Lacandonia granules, ribonucleoprotein particles

Abstract

Background: Nuclear ribonucleoprotein particles play a key role in RNA processing and in the gene expression pathway. Interchromatin granules (GICs) involved in the metabolism of pre-messenger RNA (pre-mRNA) were described in Allium cepa and Chiranthodendron pentadactylon. Other particles as Lacandonia granules (LGs) were found in Lacandonia schismatica as well as Ginkgo biloba and Welwitschia mirabilis. LGs are structures equivalent to perichromatin granules (PCGs) described in mammals and to Balbiani ring granules (BRGs) described in the midge Chironomus tentans. PCGs and BRGs are involved in the metabolism of messenger RNA (mRNA). Here, we analyze the extranucleolar particles from Cycas revoluta and Ceratozamia mexicana and compare them to GICs and LGs using conventional electron microscopy and atomic force microscopy.

Species study: Cycas revoluta (Cycadaceae) and Ceratozamia mexicana (Zamiaceae)

Hypothesis: The extranucleolar ribonucleoprotein particles in the nuclei of C. revoluta and C. mexicana are equivalent to GICs or GLs.

Methods: Fragments of young leaves of C. revoluta and C. mexicana were processed for standard transmission electron microscopy. Thin sections were stained with the EDTA technique preferential for ribonucleoproteins and osmium amine specific for DNA. From the semithin sections the samples were studied with the AFM and images of them were obtained.

Results: Ribonucleoprotein particles 32 nm in diameter are present in the interchromatin and perichromatin space in C. revoluta and C. mexicana.

Conclusion: Ribonucleoprotein particles present in the cell nuclei of C. mexicana and C. revoluta are ultrastructurally equivalent to LGs.

Translate stop   Translate stop   Translate stop  

Downloads

Download data is not yet available.

Author Biographies

Lourdes-Teresa Agredano-Moreno, Electron Microscopy Laboratory (Tlahuizcalpan), Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX

 

Translate stop  
María de Lourdes Segura-Valdez, Electron Microscopy Laboratory (Tlahuizcalpan), Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX

 

Translate stop   Translate stop  
Jaime Jiménez-Ramírez, Department of Comparative Biology. Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX

 

Translate stop  
Luis-Felipe Jiménez-García, Electron Microscopy Laboratory (Tlahuizcalpan), Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX

 

Translate stop  
Analysis of the extranucleolar ribonucleoprotein particles of <em>Cycas revoluta</em> Thunb. (Cycadaceae) and <em>Ceratozamia mexicana</em> Brongn. (Zamiaceae)

References

Agredano-Moreno LT, Jiménez-García LF. 2000. New evidence that Lacandonia granules are ultrastructurally related to perichromatin and Balbiani ring granules. Biology of the Cell 92:71-78. DOI: https://doi.org/10.1016/S0248-4900(00)88765-1

Agredano-Moreno LT, Jiménez-García LF, Echeverría OM, Martínez E, Ramos CH, Vázquez-Nin GH. 1994. Cytochemical and immunocytochemical study of nuclear structures of Lacandonia schismatica. Biology of the Cell 82:177-184. DOI: https://doi.org/10.1016/S0248-4900(94)80020-0

Agredano-Moreno LT, Segura-Valdez ML, Jiménez-Ramírez J, Jiménez-García LF. 2018. Lacandonia granules are present in the cell nucleus of the gymnosperm Welwitschia mirabilis. Botanical Sciences 96: 678-683. DOI: https://doi.org/10.17129/botsci.1924

Alonso-Murillo CD, Jiménez-García LF. 2015. Plants related to early evolutionary events (Bryophytes) contain Lacandonia granules previously discovered in flowering plants. Acta Microscopica 24: 152-158

Bernhard W. 1969. A new staining procedure for electron microscopical cytology. Journal of Ultrastructural Research 27: 250-26. DOI: https://doi.org/10.1016/S0022-5320(69)80016-X

Bao-Yu Z, Quan Z, Gui-Zhen J, Chia-Jui C. 2004. The response of ultrastructure and function of chloroplasts from cycads to doubled CO2 concentration. The Botanical Review 70: 72-78.

Dehgan B, Schutzman B. 1989. Embryo development and germination of Cycas seeds. Journal of the American Society for Horticultural Science 114:125-129

Delevoryas T. 1982. Perspectives on the origin of cycads and cycadeoids. Review of Paleobotany and Palynology 37: 115-132. DOI: https://doi.org/10.1016/0034-6667(82)90040-9

Echeverría O, Moreno Díaz de la Espina S, Jiménez-García LF, Vázquez-Nin GH. 1999. Supramolecular organization of a chromocentric plant nucleus. Biology of the Cell 91: 209-219. DOI: https://doi.org/10.1016/S0248-4900(99)80043-4

Forest F, Moat J, Baloch E, Brummitt NA, Bachman SP, Ickert-Bond S, Hollingsworth PM, Liston A, Little DP, Mathews S, Rai H, Rydin C, Stevenson DW, Thomas P, Buerki S. 2018. Gymnosperms on the EDGE. Scientific Reports 8: 6053. DOI: https://doi.org/10.1038/s41598-018-24365-4

Jiménez-García LF, Agredano-Moreno LT, Segura-Valdez M de L, Echeverría O, Martínez E, Ramos CH, Vázquez-Nin GH. 1992. The ultrastructural study of the interphase cell nucleus of Lacandonia schismatica (Lacandoniaceae:Triuridales) reveals a non-typical extranucleolar particle. Biology of the Cell 75: 101-110. DOI: https://doi.org/10.1016/0248-4900(92)90129-O

Jiménez-García LF, Elizundia JM, López-Zamorano B, Maciel A, Zavala G, Echeverría O, Vázquez-Nin GH. 1989. Implications for evolution of nuclear structures of animal, plant, fungi and protoctists. Biosystems 22: 103-116. DOI: https://doi.org/10.1016/0303-2647(89)90039-7

Jiménez-García LF, Segura-Valdez M de L. 2004. Visualizing nuclear structure in situ by atomic force microscopy. In: Braga PC, Ricci D. eds. Atomic Force Microscopy. Methods in Molecular Biology. USA: New Jersey, DOI: https://doi.org/10.1385/1-59259-647-9:191

Jiménez-Ramírez J, Agredano-Moreno LT, Segura-Valdez ML, Jiménez-García LF. 2002. Lacandonia granules are present in Ginkgo biloba cell nuclei. Biology of the Cell 94: 511-518. DOI: https://doi.org/10.1016/S0248-4900(02)00019-9

Mamay SH. 1976. Paleozoic origin of the cycads. Geological Survey U.S. Washington, DC, USA: Professional Paper 934.

Medina MA, Moreno Diaz de la Espina S, Martin M, Fernández-Gómez, ME. 1989. Interchromatin granules in plant nuclei. Biology of the Cell 67: 331-339.

Monneron A, Bernhard W. 1969. Fine structural organization of the interphase nucleus of some mammalian cells. Journal of Ultrastructural Research 27: 266-288. DOI: https://doi.org/10.1016/S0022-5320(69)80017-1

Morassi-Bonzi L, Medeghini-Bonatti P, Marini C, Baroni-Fornasiero R, Paoletti C. 1992. Ultrastructural Studies on differentiating chloroplasts in the ‘Forma fuscoviridis’ of Ceratozamia mexicana Brongn. The New Phytologist 120: 427-434. DOI: https://doi.org/10.1111/j.1469-8137.1992.tb01083.x

Norstog KJ, Nicholls TJ. 1997. The biology of the cycads. Ithaca, New York: Cornell University Press. ISBN-10: 080143033X

Segura-Valdez ML, Mendoza-Sánchez AC, García-Mauleón PMR, Agredano-Moreno LT, Jiménez-García LF. 2020. Electron microscopy of nuclear nanoribonucleoproteins (nanoRNPs). MOJ Anatomy & Physiology 7: 15-17. DOI: https://doi.org/10.15406/mojap.2020.07.00282

Segura-Valdez ML, Zamora-Cura A, Gutiérrez-Quintanar N, Villalobos Nájera E, Rodríguez-Vázquez JB, Galván-Arrieta TC, Jiménez-Rodríguez D, Agredano-Moreno LT, Lara-Martínez R, Jiménez-García LF. 2010. In: Méndez-Vilas A, Díaz J, eds. Visualization of Cell Structure in Situ by Atomic Force Microscopy. Badajoz, Spain: Microscopy: Science, Technology, Applications and Education. Formatex. pp. 441-448. ISBN-13: 978-84-614-6191-2

Spector DL. 1993. Macromolecular domains within the cell nucleus. Annual Reviews in Cell Biology 9: 265-315. DOI: https://doi.org/10.1146/annurev.cb.09.110193.001405

Sun CR. 1963. Submicroscopic structure and development of chloroplasts of Cycas revoluta. Protoplasma 56: 661-669.

Swift H. 1959. Studies on nuclear fine structure. Brookhaven Symposium in Biology. 12: 134-152

Tomlinson PB, Magellan TM, Griffith MP. 2014. Root contraction in Cycas and Zamia (Cycadales) determined by gelatinous fibers. American Journal of Botany 101: 1275-1285. DOI: https://doi.org/10.3732/ajb.1400170

Vázquez-Nin GH, Bernard W. 1971. Comparative ultrastructural study of perichromatin and Balbiani ring granules. Journal of Ultrastructural Research 36: 842-860. DOI: https://doi.org/10.1016/s0022-5320(71)90034-7

Vázquez-Nin GH, Biggiogera M, Echeverría OM. 1995. Activation of osmium ammine by SO2-generating chemicals for EM Feulgen-type staining of DNA. European Journal of Histochemistry 39: 101-106

Vovides AP, Pérez-Farrera MA, González-Astorga J, González D, Gregory T, Chemnick J, Iglesias C, Octavio-Aguilar P, Avendaño S, Bárcenas C, Salas-Morales S. 2003. An outline of our current knowledge on Mexican cycads (Zamiaceae, Cycadales). Current Topics in Plant Biology 4: 159-174

Whatley JM. 1985. Chromoplasts in some cycads. New Phytologist 101: 595-604. DOI: https://doi.org/10.1111/j.1469-8137.1985.tb02865.x

Woodenberg WR, Berjak P, Pammenter NW. 2010. Development of cycad ovules and seeds. Implication of the ER in primary cellularisation of the megagametophyte in Encephalartos natalensis. Plant Growth Regulation 62: 265-278 DOI: https://doi.org/10.1007/s10725-010-9469-6

Published
2022-04-02
How to Cite
Agredano-Moreno, L.-T., Segura-Valdez, M. de L., Jiménez-Ramírez, J., & Jiménez-García, L.-F. (2022). Analysis of the extranucleolar ribonucleoprotein particles of Cycas revoluta Thunb. (Cycadaceae) and Ceratozamia mexicana Brongn. (Zamiaceae). Botanical Sciences, 100(3), 685-691. https://doi.org/10.17129/botsci.2991
Section
STRUCTURAL BOTANY / BOTÁNICA ESTRUCTURAL