Molecular weight distribution of fructans extracted from Agave salmiana leaves

keywords: Agave Phytochemicals, Polysaccharide characterization, Size Exclusion chromatography, soluble fiber

Abstract

Background: In mezcal industry, Agave salmiana leaves are a crop residue and a potential source of fructans. Agave fructans are a soluble fiber that can act as prebiotic in gut microbiota.

Questions and Hypotheses: The molecular weight distribution of agave fructans extracted from leaves of Agave salmiana depends on the region where agaves growth and on the subspecies.

Studied species: Agave salmiana Otto ex Salm Dyck, spp. salmiana and Agave salmiana spp. crassispina.

Study site: Twelve municipalities from Guanajuato México were sampled: Ocampo, San Felipe, San Diego de la Unión, Victoria, Xichú, Atarjea, Dolores Hidalgo, Doctor Mora, Santa Catarina, Tierra Blanca, San Miguel Allende and Comonfort.

Methods: The base of the leaf close to the stem of Agave salmiana ssp. salmiana and A. salmiana ssp. crassispina plants, six years old, were harvested. Water soluble carbohydrates were extracted, the content molecular weight distribution of fructans was determined by HPLC-SEC.

Results: An average of 0.7 % of soluble carbohydrates was recovered from the leaves. The molecular weight distribution of Agave salmiana fructans was: number average molecular weight: 3,209 g/mol; average molecular weight: 5,046 g/mol; number average degree of polymerization: 19; weight average degree of polymerization: 30. High polymerization degree fructans content was greater in Agave salmiana spp. salmiana (55 %) than in Agave salmiana spp. crassispina (47 %).

Conclusions: The leaves of Agave salmiana contain a low proportion of high-molecular-weight fructans, compared to commercial agave fructans. The results demonstrated the technical feasibility to obtain fructans from Agave salmianaleaves.

Downloads

Download data is not yet available.
Molecular weight distribution of fructans extracted from <em>Agave salmiana</em> leaves

References

Arrizon J, Morel S, Gschaedler A, Monsan P. 2010. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chemistry 122: 123-130. DOI: https://doi.org/10.1016/j.foodchem.2010.02.028

Avila-Gaxiola J, Velarde-Escobar OJ, Millan-Almaraz JR, Ramos-Brito F, Atondo-Rubio G, Yee-Rendon C, Ávila-Gaxiola E. 2018. Treatments to improve obtention of reducing sugars from agave leaves powder. Industrial Crops and Products 112: 577-583. DOI: https://doi.org/10.1016/j.indcrop.2017.12.039

Biedrzycka E, Bielecka M. 2004. Prebiotic effectiveness of fructans of different degrees of polymerization. Trends in Food Science & Technology 15: 170-175. DOI: https://doi.org/10.1016/j.tifs.2003.09.014

Capilla-Vilchis R. 2017. Denominación de origen del Mezcal en Guanajuato. Agencia Informativa Conacyt. http://www.cienciamx.com/index.php/ciencia/economia/17904-denominacion-origen-mezcal-guanajuato (Accessed June 4, 2021).

Castillo-Andrade AI, Rivera-Bautista C, Godínez-Hernández C, Ruiz-Cabrera MA, Fuentes-Ahumada F, García-Chávez E, Grajales-Lagunes A. 2018. Physiometabolic effects of Agave salmiana fructans evaluated in Wistar rats. International Journal of Biological Macromolecules 108: 1300-1309. DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.043

Close D, Rodriguez M, Hu R, Yang X. 2017. Disposition and bioavailability of inulin and free sugar in untreated and dilute acid pretreated Agave tequilana leaves. Biomass & Bioenergy 106: 176-181. DOI: https://doi.org/10.1016/j.biombioe.2017.08.032

Contreras-Hernández MG, Ochoa-Martínez LA, Rutiaga-Quiñones JG, Rocha-Guzmán NE, Lara-Ceniceros TE, Contreras-Esquivel JC, Rutiaga-Quiñones OM. 2018. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production. Bioresource Technology 249: 439-446. DOI: https://doi.org/10.1016/j.biortech.2017.10.009

García-Gamboa R, Ortiz-Basurto RI, Calderón-Santoyo M, Bravo-Madrigal J, Ruiz-Álvarez BE, González-Ávila M. 2018. In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave: A comparison based on polymerization degree. LWT-Food Science and Technology 92: 380-387. DOI: https://doi.org/10.1016/j.lwt.2018.02.051

García-Vieyra MI, Del Real A, López MG. 2014. Agave fructans: their effect on mineral absorption and bone mineral content. Journal of Medicinal Food 17: 1247-1255. DOI: https://doi.org/10.1089/jmf.2013.0137

Gomez E, Tuohy KM, Gibson GR, Klinder A, Costabile A. 2010. In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans. Journal of Applied Microbiology 108: 2114-2121. DOI: https://doi.org/10.1111/j.1365-2672.2009.04617.x

López MG, Mancilla-Margalli NA, Mendoza-Díaz G. 2003. Molecular structures of fructans from Agave tequilana Weber var. Azul. Journal of Agricultural and Food Chemistry 51: 7835-7840. https://doi.org/10.1021/jf030383v

González-Llanes MD, Hernández?Calderón OM, Rios?Iribe EY, Alarid?García C, Castro Montoya AJ, Escamilla?Silva EM. 2018. Fermentable sugars production by enzymatic processing of agave leaf juice. Canadian Journal of Chemical Engineering 96: 639-650. DOI: https://doi.org/10.1002/cjce.22959

Márquez-Aguirre AL, Camacho-Ruiz RM, Arriaga-Alba M, Padilla-Camberos E, Kirchmayr MR, Blasco JL, González-Avila M. 2013. Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/Bifidobacteria in obese mice. Food & Function 4: 1237-1244. DOI: https://doi.org/10.1039/C3FO60083A

Márquez-Aguirre AL, Camacho-Ruíz RM, Gutiérrez-Mercado YK, Padilla-Camberos E, González-Ávila M, Gálvez-Gastélum FJ, Díaz-Martínez NE, Ortuño-Sahagún D. 2016. Fructans from Agave tequilana with a lower degree of polymerization prevent weight gain, hyperglycemia and liver steatosis in high-fat diet-induced obese mice. Plant Foods for Human Nutrition 71: 416-421. DOI: https://doi.org/10.1007/s11130-016-0578-x

Martinez-Gutierrez F, Ratering S, Juárez-Flores B, Godinez-Hernandez C, Geissler-Plaum R, Prell F, Zorn H, Czermak P, Schnell S. 2017. Potential use of Agave salmiana as a prebiotic that stimulates the growth of probiotic bacteria. LWT-Food Science and Technology 84: 151-159. DOI: https://doi.org/10.1016/j.lwt.2017.05.044

Mellado-Mojica E, López MG. 2012. Fructan metabolism in A. tequilana Weber blue variety along its developmental cycle in the field. Journal of Agricultural and Food Chemistry 60: 11704-11713. DOI: https://doi.org/10.1021/jf303332n

Mora-López JL, Reyes-Agüero JA, Flores-Flores JL, Peña-Valdivia CB, Aguirre-Rivera JR. 2011. Variación morfológica y humanización de la sección Salmianae del género Agave. Agrociencia 45: 465-477.

Moreno-Vilet L, Bostyn S, Flores-Montaño JL, Camacho-Ruiz RM. 2017. Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans. Food Chemistry 237: 833-840. DOI: https://doi.org/10.1016/j.foodchem.2017.06.020

Moreno-Vilet L, Garcia-Hernandez MH, Delgado-Portales RE, Corral-Fernandez NE, Cortez-Espinosa N, Ruiz-Cabrera MA, Portales-Perez DP. 2014. In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. International Journal of Biological Macromolecules 63: 181-187. DOI: https://doi.org/10.1016/j.ijbiomac.2013.10.039

Mueller M, Reiner J, Fleischhacker L, Viernstein H, Loeppert R, Praznik W. 2016. Growth of selected probiotic strains with fructans from different sources relating to degree of polymerization and structure. Journal of Functional Foods 24: 264-275. DOI: https://doi.org/10.1016/j.jff.2016.04.010

Ortiz-Basurto RI, Rubio-Ibarra ME, Ragazzo-Sanchez JA, Beristain CI, Jiménez-Fernández M. 2017. Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerization. Carbohydrate Polymers 175: 603-609. DOI: https://doi.org/10.1016/j.carbpol.2017.08.030

Praznik W, Löppert R, Cruz-Rubio JM, Zangger K, Huber A. 2013. Structure of fructo-oligosaccharides from leaves and stem of Agave tequilana Weber, var. azul. Carbohydrate Research 381: 64-73. DOI: https://doi.org/10.1016/j.carres.2013.08.025

Reynoso-Ponce H, Grajales-Lagunes A, Castillo-Andrade A, González-García R, Ruiz-Cabrera MA. 2017. Integration of nanofiltration and spray drying processes for enhancing the purity of powdered fructans from Agave salmiana juice. Powder Technology 322: 96-105. DOI: https://doi.org/10.1016/j.powtec.2017.09.003

Santiago-García PA, Mellado-Mojica E, León-Martínez FM, López MG. 2017. Evaluation of Agave angustifolia fructans as fat replacer in the cookies manufacture. LWT-Food Science and Technology 77: 100-109. DOI: https://doi.org/10.1016/j.lwt.2016.11.028

Published
2022-03-22
How to Cite
Plascencia, A., Gutiérrez-Mora, A., Rodríguez-Domínguez, J. M., Castañeda-Nava, J. J., Gallardo-Valdez, J., Shimada, H., & Camacho-Ruiz, R. M. (2022). Molecular weight distribution of fructans extracted from Agave salmiana leaves. Botanical Sciences, 100(3), 657-666. https://doi.org/10.17129/botsci.2960
Section
PHYTOCHEMISTRY / FITOQUÍMICA