Ecophysiological plasticity of Theobroma cacao L. clones in response to the structure and microclimate of agroforestry systems in Mexico

keywords: canopy transmissivity, leaf relative water content, photosynthetic active radiation, specific leaf area, stomatal size, vapor pressure deficit

Abstract

Background: Cocoa is a species commonly cultivated under agroforestry systems (AFs), when microclimate conditions are adequate, it achieves high growth rates and seed yield.

Questions and Hypotheses: How do four cocoa varieties respond to open (OC) and closed (CC) shade tree canopy conditions within AFs? We hypothesized that cocoa functional traits values correlate with microclimate conditions in the CC.

Studied species: Theobroma cacao L. (Malvaceae).

Study site and dates: Papantla, Nautla, Veracruz; San Pedro, Oaxaca. Rainy season, 2018.

Methods: Three AFs were selected; either one with OC and CC zones, photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (Ta) and relative humidity (RH) were registered. Cocoa tree and leaves functional traits were evaluated in four regional cocoa varieties, in ten individuals per variety, canopy condition and AFs.

Results: Higher values of PAR, VPD and Ta, and lower RH were recorded under OC than in CC. Cocoa tree height, stem diameter, fruit production, SLA (Specific Leaf Area), LWC (Leaf Water Content) and SS (Stomatal Size) were higher for Nautla. Only the cocoa clone Inifap8 displayed higher height and fruit production than the other varieties.

Conclusions: Veracruz and Oaxaca states have AFs with microclimatic conditions where cocoa cultivation can potentially develop. However, it is essential to incorporate our understanding of the adaptive responses of cocoa to particular shade trees canopy structure. Cocoa leaf traits, SLA, LWC and SS, may be used as indicators for enhancing management and sustainability in AFs in the face of climate change.

Translate stop   Translate stop  

Downloads

Download data is not yet available.

Author Biographies

Eliezer Cocoletzi Vásquez, Centro de Eco-Alfabetización y Diálogo de Saberes. Universidad Veracruzana. Veracruz

 

Translate stop  
Enrique Hipólito-Romero, Centro de Eco-Alfabetización y Diálogo de Saberes. Universidad Veracruzana. Veracruz

 

Translate stop  
Jorge Ricaño-Rodríguez, Centro de Eco-Alfabetización y Diálogo de Saberes. Universidad Veracruzana. Veracruz

 

Translate stop   Translate stop  
Jose Maria Ramos-Prado, Centro de Eco-Alfabetización y Diálogo de Saberes. Universidad Veracruzana. Veracruz

 

Translate stop  
Ecophysiological plasticity of <em>Theobroma cacao</em> L. clones in response to the structure and microclimate of agroforestry systems in Mexico

References

Acheampong K, Hadley P, Daymond AJ. 2013. Photosynthetic activity and early growth of four cacao genotypes as influenced by different shade regimes under west african dry and wet season conditions. Experimental Agriculture 49: 31-42. DOI: http://doi.org/10.1017/S0014479712001007

Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ. 2000. The evolution of plant ecophysiological traits: Recent advances and future directions: New research addresses natural selection, genetic constraints, and the adaptive evolution of plant ecophysiological traits. BioScience, 50: 979-995. DOI: https://doi.org/10.1641/0006-3568(2000)050[0979:TEOPET]2.0.CO;2

Agele S, Famuwagun B, Ogunleye A. 2016. Effects of shade on microclimate, canopy characteristics and light integrals in dry season field-grown cocoa (Theobroma cacao L.) seedlings. Journal of Horticultural Sciences 11: 47-56. DOI: https://jhs.iihr.res.in/index.php/jhs/article/view/105

Agudelo-Castañeda GA, Cadena-Torres J, Almanza-Merchán PJ, Pinzón-Sandoval EH. 2018. Desempeño fisiológico de nueve genotipos de cacao (Theobroma cacao L.) bajo la sombra de tres especies forestales en Santander, Colombia. Revista Colombiana de Ciencias Hortícolas 12: 223-232. DOI: https://doi.org/10.17584/rcch.2018v12i1.7341

Almeida AA, Valle RR. 2008. Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology 19: 425-448. DOI: http://doi.org/10.1590/S1677-04202007000400011

Armengot L, Barbieri P, Andres C, Milz J, Schneider M. 2016. Cacao agroforestry systems have higher return on labor compared to full-sun monocultures. Agronomy for Sustainable Development 36: 1-10. DOI: http://doi.org/10.1007/s13593-016-0406-6

Asare R, Asare RA, Asante WA, Markussen B, Raebild A. 2017. Influences of shading and fertilization on on-farm yields of cocoa in Ghana. Experimental Agriculture 53: 416-431. DOI: http://doi.org/10.1017/S0014479716000466

Avendaño-Arrazat CH, Villarreal-Fuentes JM, Campos-Rojas EG, Méndez-Richar A, Mendoza-López A, Aguirre-Medina JF, Sandoval-Esquivez A, Espinosa-Zaragoza S. 2011. Diagnóstico del cacao en México. México: Secretaría de Agricultura y Desarrollo Rural (SAGARPA)-

Universidad Autónoma Chapingo. https://acortar.link/zhXOZ3

Ávila-Lovera E, Coronel I, Jaimez R, Urich R, Pereyra G, Araque O, Chacón I, Tezara W. 2015. Ecophysiological traits of adult trees of criollo cocoa cultivars (Theobroma cacao l.) from a germplasm bank in Venezuela. Experimental Agriculture 52: 137-153. DOI: http://doi.org/10.1017/S0014479714000593

Baligar V, Bunce J, Machado R, Elson M. 2008. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica 46: 216-221. DOI: https://doi.org/10.1007/s11099-008-0035-7

Blaser-Hart WJ, Hart SP, Oppong J, Kyereh D, Yeboah E, Six J. 2021. The effectiveness of cocoa agroforests depends on shade-tree canopy height. Agriculture, Ecosystems & Environment 322: 107676. DOI: https://doi.org/10.1016/j.agee.2021.107676

Carr MKV, Lockwood G. 2011. The water relations and irrigation requirements of cocoa (Theobroma cacao L.): A review. Experimental Agriculture 47: 653-676. DOI: http://doi.org/10.1017/S0014479711000421

Caso BL. 2016. Cacao. Producción, consumo y comercio. Del período prehispánico a la actualidad en América Latina. Madrid: Iberoamericana-Vervuet, ISBN 9788484899242

Cerda BR, Orozco AL, Carreño RG, Ordóñez JC, Amores CFM, Caicedo AWJ, Oblitas GPS, Somarriba CE. 2019. Tropical agroforestry and ecosystem services: tradeoff analysis for better design strategies. In: Mosquera-Losada MR, Prabhu R eds. Agroforestry for sustainable agriculture. Cambridge: Burleigh Dodds Science Publishing, UK. ISBN: 9781786762207

Climate-data.org. 2018. Public database. Mexico Climate: Average Temperature in Mexico, Weather & Mexico Weather by Month - Climate-Data.org.

https://en.climate-data.org/north-america/mexico-179/ (accessed December 31, 2018).

Cocoletzi E, Contreras-Varela X, García-Pozos MJ, López-Portilla L, Gaspariano-Machorro MD, García-Chávez J, Fernandes GW, Aguirre-Jaimes A. 2019. Incidence of galls on fruits of Parkinsonia praecox and its consequences on structure and physiology traits in a Mexican semi-arid region. Revista Mexicana de Biodiversidad 90: e902758. DOI: https://doi.org/10.22201/ib.20078706e.2019.90.2758

Daymond AJ, Tricker PJ, Hadley P. 2011. Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biologia plantarum 55: 99-104. DOI: https://doi.org/10.1007/s10535-011-0013-y

De Almeida J, Herrera A, Tezara W. 2018. Phenotypic plasticity to photon flux density of physiological, anatomical and growth traits in a modern criollo cocoa clone. Physiologia Plantarum 166: 821-832. DOI: https://doi.org/10.1111/ppl.12840

Díaz-José O, Aguilar-Ávila J, Rendón-Medel R, Santoyo-Cortés VH. 2013. Current state of and perspectives on cocoa production in Mexico. Ciencia e Investigación Agraria 40: 279-289. DOI: http://dx.doi.org/10.4067/S0718-16202013000200004

Espinosa-García JA, Uresti-Gil J, Vélez-Izquierdo A, Moctezuma-López G, Inurreta-Aguirre HD, Góngora-González SF. 2015. Productividad y rentabilidad potencial del cacao (Theobroma cacao L.) en el trópico mexicano. Revista Mexicana de Ciencias Agrícolas 6: 1051-1063.

García-Arellano D. 2016. Caracterización agroclimática de un sistema agroforestal y evaluación de la morfología de cuatro variedades de cacao (Theobroma cacao L.) en la comunidad de Cerro Camarón, municipio de San Pedro Ixcatlán, Oaxaca. BSc Thesis. Universidad Veracruzana.

Gómez-Pompa A, Flores JS, Fernández MA. 1990. The sacred cacao groves of the Maya. Latin American Antiquity 1: 247-257. DOI: https://doi.org/10.2307/972163

Gómez-Yarce JP, Mompotes-Largo ER, López-Castro A, Hernández-Arredondo JD, Córdoba-Gaona OJ. 2020. Gas exchange efficiency in Cocoa - Spanish elm agroforestry system in the northwest Antioquia, Colombia. Revista Facultad Nacional de Agronomía Medellín 73: 9283-9291. DOI: https://doi.org/10.15446/rfnam.v73n3.85278

Harvey CA, Chacón M, Donatti CI, Garen E, Hannah L, Andrade A, Bede L, Brown D, Calle A, Chara J, Clement C, Gray E, Hoang, MH, Minang P, Rodríguez AM, Seeberg-Elizabeth C, Semroc B, Shames S, Smukler S, Somarriba E, Torquebiau, E, Van Etten J, Wollenber E. 2014. Climate?smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters 7: 77-90. DOI: https://doi.org/10.1111/conl.12066

Hipólito-Romero E, Ramos-Prado JM, Ricaño-Rodríguez J, Ortega-Pineda G. 2019. Sistemas agroforestales para el trópico mexicano en el manejo y la conservación de especies bioculturales. In: Del Amo RS, Vergara-Tenorio MC eds. La restauración ecológica productiva: El camino para recuperar el patrimonio biocultural de los pueblos mesoamericanos. Veracruz, México: Universidad Veracruzana: ISBN: 978-607-502-761-6

Hipólito-Romero E, Carcaño-Montiel MG, Ramos-Prado JM, Vázquez-Cabañas EA, López-Reyes L, Ricaño-Rodríguez J. 2017. Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (Theobroma cacao L.) en un sistema agroforestal tradicional del norte de Oaxaca, México. Revista Argentina de Microbiología 49: 356-365. DOI: https://doi.org/10.1016/j.ram.2017.04.003

INIFAP [Instituto Nacional de Investigaciones Forestales, Agrícolas y pecuarias]. 2011. Paquete tecnológico de cacao (Theobroma cacao L.): Producción de planta. México: Secretaría de Agricultura Ganadería y Pesca, SAGARPA. https://acortar.link/TbxRAa (accessed January 18, 2022).

Isaac ME, Timmer VR, Quashie-Sam SJ. 2007. Shade tree effects in an 8-year-old cocoa agroforestry system: biomass and nutrient diagnosis of Theobroma cacao by vector analysis. Nutrient Cycling in Agroecosystems 78: 155-165. DOI: http://doi.org/10.1007/s10705-006-9081-3

Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, Rist S. 2014. Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agroforestry Systems 88: 1117-1132. DOI: http://doi.org/10.1007/s10457-013-9643-8

Jaimez RE, Amores PF, Vasco A, Gastón LR, Tarqui O, Quijano G, Jimenez JC, Tezara W. 2018. Photosynthetic response to low and high light of cacao growing without shade in an area of low evaporative demand. Acta Biológica Colombiana 23: 95-103. DOI: https://doi.org/10.15446/abc.v23n1.64962

Jiménez-Pérez AJ, Cach-Pérez M, Valdez-Hernández M, de la Rosa-Manzano E. 2019. Effect of canopy management in the water status of cacao (Theobroma cacao) and the microclimate within the crop area. Botanical Sciences 97: 701-710. DOI: http://doi.org/10.17129/botsci.2256

Köhler M, Hanf A, Barus H, Hendrayanto, Hölscher D. 2014. Cacao trees under different shade tree shelter: effects on water use. Agroforestry Systems 88: 63-73. DOI: http://doi.org/10.1007/s10457-013-9656-3

Kongor JE, Boeckx P, Vermeir P, Van de Walle D, Baert G, Afoakwa EO, Dewettinck K. 2019. Assessment of soil fertility and quality for improved cocoa production in six cocoa growing regions in Ghana. Agroforestry Systems, 93:1455-1467 https://doi.org/10.1007/s10457-018-0253-3.

Kröber W, Plath I, Heklau H, Bruelheide H. 2015. Relating stomatal conductance to leaf functional traits. Journal of Visualized Experiments 104: e52738. DOI: https://doi.org/10.3791/52738

Lahive F, Hadley P, Daymond AJ. 2019. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development 39: 1-22. DOI: https://doi.org/10.1007/s13593-018-0552-0

López-Juárez SA, Hipólito-Romero E, Cerdán-Cabrera CR, Ortiz-Ceballos GC, Reyes-López D. 2019. Association between cocoa (Theobroma cacao l.) and vanilla (Vanilla planifolia jacks. Ex andrews) crops in an agroforestry system in Comalcalco, Tabasco. Tropical and Subtropical Agroecosystems 22: 613-629.

Monteiro MV, Blanuša T, Verhoef A, Hadley P, Cameron RW. 2016. Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany 64: 32-44. DOI: https://doi.org/10.1071/BT15198

Monteith JL, Unsworth MH. 2013. Principles of Environmental Physics - Plants, Animals, and the Atmosphere. Poland: Elsevier. ISBN: 978-0-12-386910-4.

Niether W, Armengot L, Andres C, Schneider M, Gerold G. 2018. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Annals of Forest Science 75: 1-16. DOI: http://doi.org/10.1007/s13595-018-0723-9

Niether W, Schneidewind U, Armengot L, Adamtey N, Schneider M, Gerold G. 2017. Spatial-temporal soil moisture dynamics under different cocoa production systems. CATENA 158: 340-349. DOI: https://doi.org/10.1016/j.catena.2017.07.011

Pabello-Vega EA. 2019. Caracterización agroecológica de tres sistemas agroforestales con cultivares de Theobroma cacao L. BSc Thesis. Universidad Veracruzana.

Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. DOI: https://doi.org/10.1071/BT12225_CO

Pérez-Ramos IM, Matias L, Gomez-Aparicio L, Godoy O. 2019. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nature Communications 10: 1-11. DOI: https://doi.org/10.1038/s41467-019-10453-0

Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Motamayor-Arias JC. 2013. Catálogo de clones de cacao seleccionados por el CATIE para siembras comerciales. Manual técnico. 105. Turrialba, Costa Rica, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). ISBN 978-9977-57-571-1

R Core Team. 2020. R: A language end environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/

Rasband WS. 2019. ImageJ. Image Processing and Analysis in Java. 1.49e. National Institutes of Health. http://imagej.nih.gov/ij/

Rojas FJ, Rodríguez MFD. 2019. Experiencias del Plan Cacao Nestlé, en México. Creación de valor compartido en sistemas agroforestales de cacao, café y vainilla. Una propuesta empresarial. In: Del Amo RS, Vergara TMC eds. La restauración ecológica productiva: El camino para recuperar el patrimonio biocultural de los pueblos mesoamericanos. Veracruz, México: Universidad Veracruzana, ISBN: 978-607-502-761-6

Rozendaal DMA, Hurtado VH, Poorter L. 2006. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology 20: 207-216. DOI: https://doi.org/10.1111/j.1365-2435.2006.01105.x

Saavedra F, Jordan Peña E, Schneider M, Naoki K. 2020. Effects of environmental variables and foliar traits on the transpiration rate of cocoa (Theobroma cacao L.) under different cultivation systems. Agroforestry systems 94: 2021-2031. DOI: http://doi.org/10.1007/s10457-020-00522-5

Sauvadet M, Dickinson AK, Somarriba E, Phillips-Mora W, Cerda RH, Martin AR, Isaac ME. 2021. Genotype–environment interactions shape leaf functional traits of cacao in agroforests. Agronomy for Sustainable Development 41: 1-12. DOI: https://doi.org/10.1007/s13593-021-00690-3

Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel DS, Schaepman ME. 2017. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications 8: 1-12. DOI: http://doi.org/10.1038/s41467-017-01530-3

Smith T, Huston M. 1990. A theory of the spatial and temporal dynamics of plant communities. In: Grabherr G, Mucina L, Dale M, Ter Braak C eds. Progress in theoretical vegetation science. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-94-009-1934-1

Somarriba E, Orozco Aguilar L, Cerda Bustillos R, López Sampson A, Cook J. 2018. Analysis and design of the shade canopy of cocoa-based agroforestry systems. In: Umaharan P. ed. Achieving sustainable cultivation of cocoa. Cambridge, UK: Burleigh Dodds Science Publishing, ISBN: 9781786761682

Suárez-Salazar JC, Ngo-Bieng MA, Melgarejo LM, Di Rienzo JA, Casanoves F. 2018. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. Plos One 13: e0191003. DOI: http://doi.org/10.1371/journal.pone.0191003

Tezara W, Urich R, Jaimez R, Coronel I, Araque O, Azocar C, Chacón I. 2016. Does Criollo cocoa have the same ecophysiological characteristics than Forastero? Botanical Sciences 94: 563-574. DOI: https://doi.org/10.17129/botsci.552

Thornton PE, Thornton MM, Mayer BW, Wei Y, Devarakonda R, Vose, RS, Cook RB. 2016. Daymet: Daily surface weather data on a 1-km grid for north america. DOI: http://doi.org/10.3334/ORNLDAAC/1328

Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Sherber C, Schroth G, Veldkamp E, Wanger TC. 2011. Multifunctional shade?tree management in tropical agroforestry landscapes-a review. Journal of Applied Ecology 48: 619-629. DOI: http://doi.org/10.1111/j.1365-2664.2010.01939.x

Utomo B, Prawoto AA, Bonnet S, Bangviwat A, Gheewala SH. 2016. Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. Journal of Cleaner Production, 134(Part B), 583-591. https://doi.org/10.1016/j.jclepro.2015.08.102

Vaast P, Harmand JM, Rapidel B, Jagoret P, Deheuvels O. 2016. Coffee and cocoa production in agroforestry - A climate-smart agriculture model. In: Torquebiau E ed. Climate Change and Agriculture Worldwide. Dordrecht: Springer Netherlands, ISBN: 978-94-017-7462-8

Vaast P, Somarriba E. 2014. Tradeoffs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agroforestry systems 88: 947-956. DOI: http://doi.org/10.1007/s10457-014-9762-x

Valenzuela-Que FG. 2010. Manejo, producción y moniliasis en cacaotales con sombra mono y multi-específica en la Chontalpa, Tabasco, México. BSc Thesis. Instituto Tecnológico de la Zona Olmeca, México.

World Cocoa Foundation. 2020. http://worldcocoafoundation.org

Zuidema PA, Leffelaar PA, Gerritsma W, Mommer L, Anten NP. 2005. A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Agricultural Systems 84: 195-225. DOI: https://doi.org/10.1016/j.agsy.2004.06.015

Published
2022-05-16
How to Cite
Cocoletzi Vásquez, E., Hipólito-Romero, E., Ricaño-Rodríguez, J., & Ramos-Prado, J. M. (2022). Ecophysiological plasticity of Theobroma cacao L. clones in response to the structure and microclimate of agroforestry systems in Mexico. Botanical Sciences, 100(4), 960-976. https://doi.org/10.17129/botsci.2925
Section
PHYSIOLOGY / FISIOLOGÍA