Regeneration niche of Abies religiosa (Kunth) Schltdl. & Cham. on Mount Tláloc, Iztaccíhuatl-Popocatépetl National Park, México

keywords: Longitudinal analysis, demography, fir, survival

Abstract

Background: The physical and biological factors involved in the survival and mortality risks of seedlings are important to understand the natural processes associated with their establishment in a spatio-temporal context.

Objectives: Identify which environmental factors define the regeneration niche of Abies religiosa based on the survival and mortality risks of its seedlings.

Methods: Seventeen plots of 1 m2 were established and all the seedlings of the 2019 cohort were located, numbered and measured in height, number of embryonic leaves, number of nodes and visible damage and followed for a year. The properties of the soil surrounding the plots were determined. In each plot, hemispheric photographs were taken and based on them, the canopy was stratified into two categories: partially closed and open. Analyses were performed with the SAS LIFETEST and LIFEREG procedures.

Results: The seedling survival curves were different between the canopy categories (Log-Rank: χ2 = 8.35, gl = 1, P < 0.05). The probability of survival under open canopy was higher (0.29 ± 0.01) than under partially closed canopy (0.20 ± 0.01). The variables with positive effects on survival times were: height and number of nodes; proportion of direct sunlight, bulk density of the soil, mean temperature, mean humidity and its coefficient of variation, and the variation of the soil saturation point.

Conclusions: These covariates define the regeneration niche of A. religiosa.

Downloads

Download data is not yet available.
Regeneration niche of <em>Abies religiosa</em> (Kunth) Schltdl. & Cham. on Mount Tláloc, Iztaccíhuatl-Popocatépetl National Park, México

References

Alvarado-Rosales D, Hernández-Tejeda T. 2002. Decline of sacred fir in the Desierto de los Leones National Park. In: Fenn M, de Bauer LI, Hernández-Tejeda T, eds. Urban air pollution and forests: resources at risk in the Mexico City Air Basin. New York: Springer-Verlag. pp. 243-260. DOI: httpss://doi.org/10.1007/978-0-387-22520-3_10

Allison P. 2010. Survival analysis using the SAS® System: A practical guide. USA, Cary, North Carolina: SAS Publishing. ISBN 978-1-59994-640-5

Ángeles-Cervantes E, López-Mata L. 2009. Supervivencia de una cohorte de plántulas de Abies religiosa bajo diferentes condiciones postincendio. Boletín de la Sociedad Botánica de México 84: 25-33. DOI: https://doi.org/10.17129/botsci.2289

Arrieta S, Suárez F. 2005. Spatial patterns of seedling emergence and survival as a critical phase in holly (Ilex aquifolium L.) woodland recruitment in Central Spain. Forest Ecology and Management 205: 267-282. DOI: https://doi.org/10.1016/j.foreco.2004.10.009

Baraloto C, Goldberg D, Bonal D. 2005. Performance trade?offs among tropical tree seedlings in contrasting microhabitats. Ecology 86: 2461-2472. DOI: https://doi.org/10.1890/04-1956

Beckage B, Lavine M, Clark J. 2005. Survival of tree seedlings across space and time: estimates from long-term count data. Journal of Ecology 93: 1177-1184. DOI: https://doi.org/10.1111/j.1365-2745.2005.01053.x

Blennow K, Lindkvist L. 2000. Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. Forest Ecology and Management 135: 289-301. DOI: https://doi.org/10.1016/S0378-1127(00)00287-5

Canham CD, Marks PL. 1985. The response of woody plants to disturbance patterns of establishment and growth. In: Pickett TA, White PS. eds. The Ecology of Natural Disturbance and Patch Dynamics. Londres: Academic Press, Inc. pp 197-216. DOI: https://doi.org/10.1016/B978-0-12-554520-4.50016-2

Caspersen J, Kobe R. 2001. Interspecific variation in sapling mortality in relation to growth and soil moisture. Oikos 92: 160-168. DOI: https://doi.org/10.1034/j.1600-0706.2001.920119.x

Challenger A. 1998. Utilización y conservación de los ecosistemas terrestres de México. Pasado, presente y futuro. México, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN 970-9000-02-0.

Cruz-Flores G, Guerra-Hernández EA, Valderrábano-Gómez JM, Campo-Alvés J. 2020. Indicadores de calidad de suelos en bosques templados de la Reserva de la Biosfera los Volcanes, México. Revista Terra Latinoamericana 38: 781-793. DOI: https://doi.org/10.28940/terra.v38i4.421

Cruz-Rodríguez JA, López-Mata L. 2004. Demography of the seedling bank of Manilkara zapota (L.) Royen, in a subtropical rain forest of Mexico. Plant Ecology 172: 227-235. DOI: https://doi.org/10.1023/B:VEGE.0000026341.46440.f5

Curt T, Coll L, Prévosto B, Balandier P, Kunstler G. 2005. Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition. Annals of Forest Science 62: 51-60. DOI: https://doi.org/10.1051/forest:2004092

Fenn M, de Bauer MLI, Hernández-Tejeda T. eds. 2002. Urban air pollution and forests: resources at risk in the Mexico City Air Basin. New York: Springer-Verlag. https://doi.org/10.1007/978-0-387-22520-3

Grubb PJ. 1977. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews 52: 107-145. DOI: https://doi.org/10.1111/j.1469-185X.1977.tb01347.x

Hallé F, Oldeman RAA, Tomlinson PB. 1978. Tropical Trees and Forests. An architectural analysis. Berlin-Heidelberg-New York: Springer-Verlag. pp. 441. ISBN: 978-3-642-81190-6.

He Z, Liu J, Su S, Zheng S, Xu D, Wu Z, Hong W, Wang J. 2015. Effects of Forest Gaps on Soil Properties in Castanopsis kawakamii Nature Forest. Plos one 10: 0141203. DOI: https://doi.org/10.1371/journal.pone.0141203

Johnson DM, Smith WK. 2005. Refugial forests of the southern Appalachians: photosynthesis and survival in current-year Abies fraseri seedlings. Tree Physiology 25: 1379-1387. DOI: https://doi.org/10.1093/treephys/25.11.1379

Kitajima K, Fenner M. 2000. Ecology of Seedling Regeneration. In: Fenner M, ed. Seeds: The Ecology of Regeneration in Plant Communities. London: CAB Publishing, pp 331-359. ISBN: 9780851994321. http://dx.doi.org/10.1079/9780851994321.0331

Kitajima K, Myers JA. 2008. Seedling ecophysiology: strategies toward achievement of positive net carbon balance. In: Leck MA, Parker VT, Simpson RL. eds. Seedling Ecology and Evolution. Cambridge: Cambridge University Press. Pp. 172-188. ISBN 978-0-521-87305-5

Kunstler G, Curt T, Bouchaud M, Lepart J. 2005. Growth, mortality, and morphological response of European beech and downy oak along a light gradient in sub-Mediterranean forest. Canadian Journal of Forest Research 35: 1657-1668. DOI: https://doi.org/10.1139/x05-097

Lara-González R, Sánchez-Velásquez LR, Corral-Aguirre J. 2009. Regeneración de Abies religiosa en claros del dosel versus sotobosque, Parque Nacional Cofre de Perote, México. Agrociencia 43: 739-747.

Leck MA, Parker VT, Simpson R, 2008. Seedling Ecology and Evolution. Cambridge: Cambridge University Press. ISBN: 978-0-521-87305-5

Leishman MR, Westoby M. 1994. The role of large seed size in shaded conditions: experimental evidence. Functional Ecology 8: 205-214. DOI: https://doi.org/10.2307/2389903

Madrigal SX. 1964. Contribución al conocimiento de la ecología de los bosques de oyamel Abies religiosa (HBK) Schl. Et Cham) en el Valle de México. Boletín técnico 18, México, DF: Instituto Nacional de Investigaciones Forestales.

Marañón T, Camarero JJ, Castro-Gutiérrez J, Díaz-Esteban M, Espelta JM, Hampe A, Jordano P, Valladares F, Verdú M, Zamora R. 2004. Heterogeneidad ambiental y nicho de regeneración. In: Valladares F, ed. Ecología del Bosque Mediterráneo en un Mundo Cambiante. Madrid: Ministerio de Medio Ambiente, pp. 69-49. ISBN: 84-8014-552-8

Matiz-León JC, Rodríguez-Rodríguez G, Alfaro-Valero C. 2019. Modelos de temperatura del suelo a partir de sondeos superficiales y sensores remotos para el área geotérmica de Paipa, Boyacá-Colombia. Boletín de Geología 41: 71-88. DOI: https://doi.org/10.18273/revbol.v41n2-2019004

Moles AT, Leishman MR. 2008. The seedling as part of a plant’s life history strategy. In: Leck MA, Parker VT, Simpson RL. eds. Seedling Ecology and Evolution. Cambridge: Cambridge University Press. pp. 189-1238. ISBN 978-0-521-87305-5

Montoya E, Guzmán-Plazola RA, López-Mata L. 2020. Fragmentation dynamics in an Abies religiosa forest of central Mexico. Canadian Journal of Forest Research 50: 680-688. DOI: https://doi.org/10.1139/cjfr-2019-0235

Osunkjoya OO, Ash JE, Hopkins MS, Graham AW. 1992. Factors affecting survival of tree seedlings in North Queensland rainforests. Oecologia 91: 569-578. DOI: https://doi.org/10.1007/BF00650333

Packer A, Clay K. 2003. Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology 84: 108-119. DOI: https://doi.org/10.1890/0012-9658(2003)084[0108:SPAPSS]2.0.CO;2

Platt WJ, Streng DR. 1989. Gaps in forest ecology. Special Feature: Treefall Gaps and Forest Dynamics. Ecology 70: 535-576. DOI: https://doi.org/10.2307/1940194

R Core Team. 2020. R: A language end environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/

Rey PJ, Alcántara JM. 2000. Recruitment dynamics of a fleshy?fruited plant (Olea europaea): connecting patterns of seed dispersal to seedling establishment. Journal of Ecology 88: 622-633. DOI: https://doi.org/10.1046/j.1365-2745.2000.00472.x

Rich PM, Wood J, Vieglais DA, Burek K, Webb N. 1999. Hemiview Manual, version 2.1. Delta-T Devices, Ltd. https://delta-t.co.uk/wp-content/uploads/2020/02/HemiView-User-Manual-_2.1.pdf (accessed August 20, 2020)

Román Ibarra R. 2002. Ecología de semillas y plántulas de Abies religiosa (HBK) Schl. et Cham. en el parque nacional “Cumbres del Ajusco”. BSc. Thesis. Universidad Nacional Autónoma de México.

Rzedowski J. 2006. Bosque de Coníferas. In: Rzedowski J, ed. Vegetación de México. Ciudad de México, México: 1ra. Edición digital, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Págs. 295-327. ISBN: 9681800028.

Sánchez-Gonzáles A, López-Mata L. 2003. Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica 74: 47-71.

SAS. 2012. Statistical Analysis System. V.9.0 ed. SAS. Institute. Inc. N.C. USA: Cary.

Scharenbroch BC, Bockheim JC. 2007. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294: 219-233. DOI: https://doi.org/10.1007/s11104-007-9248-y

SEMARNAT [Secretaría de Medio Ambiente y Recursos Naturales]. 2020. Anuario Estadístico de la Producción Forestal 2017. http://dsiappsdev.semarnat.gob.mx/datos/portal/publicaciones/2020/2017.pdf (accessed November 16, 2020).

SEMARNAT [Secretaría de Medio Ambiente y Recursos Naturales]. 2000. Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial, 31 de diciembre de 2002.

Yamamoto SI. 2000. Forest gap dynamics and tree regeneration. Journal of Forest Research 5: 223-229. DOI: https://doi.org/10.1007/BF02767114

Published
2022-01-21
How to Cite
Hernández Ramírez, V., López-Mata, L., Cruz-Rodríguez, J. A., & Luna Cavazos, M. (2022). Regeneration niche of Abies religiosa (Kunth) Schltdl. & Cham. on Mount Tláloc, Iztaccíhuatl-Popocatépetl National Park, México. Botanical Sciences, 100(2), 331-344. https://doi.org/10.17129/botsci.2912
Section
ECOLOGY / ECOLOGÍA