Hydraulic architecture of seedlings and adults of Rhizophora mangle L. in fringe and scrub mangrove

keywords: Hydraulic conductivity, mangrove type, salinity, water potentials, Yucatan

Abstract

Background: Mangrove plant species have distinctive anatomical and physiological responses to cope with a wide range of salinities and inundations. These strategies pertain a safe and efficient water use and transport, essential for survival.

Questions: How are the anatomical and physiological attributes of the hydraulic architecture of seedlings and adults of Rhizophora mangle? what are the changes in hydraulic architecture of seedlings and adults of R. mangle in contrasting microenvironments?

Studied species: Rhizophora mangle L. (Rhizophoraceae).

Study site and dates: Scrub and fringe mangroves in Ria Celestún Biosphere Reserve, during the rainy season of 2013 (July to October).

Methods: Hydraulic conductivity and leaf water potential, as well as xylem vessel density, length, transversal and radial diameter, and area were measured for seedlings and adults from both sites. The prevailing environmental conditions (soil water potential, salinity, photon flux density, air temperature and relative humidity) were also characterized.

Results: A safer hydraulic conduction system, with narrow and more grouped vessels, was observed in seedlings than in adults of R. mangle in both sites. Adult individuals from the scrub mangrove, in the hyper saline microenvironment, had a safer hydraulic conduction system than adults in the fringe mangrove.

Conclusions: The seedling stage of R. mangle showed a safer hydraulic system than adults in both types of mangroves. However, over time this hydraulic conduction system could become more efficient or remain safe depending on the microenvironment in which individuals are growing.

Downloads

Download data is not yet available.

Author Biographies

Diana J. Cisneros-de la Cruz, Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida

Unidad de Recursos Naturales

Laura Yáñez-Espinosa, Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí

Instituto de Investigación de Zonas Desérticas

Casandra Reyes-García, Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida

Unidad de Recursos Naturales

Roberth Us-Santamaría, Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida

Unidad de Recursos Naturales

Hydraulic architecture of seedlings and adults of Rhizophora mangle L. in fringe and scrub mangrove

References

Alongi DM. 2002. Present state and future of the world’s mangrove forests. Environmental Conservation 29: 331-349. DOI: https://doi.org/10.1017/S0376892902000231

Baas P, Werker E. Fahn A. 1983. Some ecological trends in vessel characters. IAWA Bulletin 4: 14-147. DOI: https://doi.org/10.1163/22941932-90000407

Ball MC 1988. Ecophysiology of mangroves. Trees 2: 129-142. DOI: https://doi.org/10.1007/BF00196018

Ball MC 2002. Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees 16: 126-139. DOI: https://doi.org/10.1007/s00468-002-0169-3

Ball MC, Farquhar GD. 1984. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiology 74: 1-6. DOI: https://doi.org/10.1104/pp.74.1.1

Ball MC, Cochrane MJ, Rawson MH. 1997. Growth and water use of the mangroves Rhizophora apiculate and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant, Cell & Environment 20: 1158-1166. DOI: https://doi.org/10.1046/j.1365-3040.1997.d01-144.x

Biber PD. 2006. Measuring the effects of salinity stress in the red mangrove, Rhizophora mangle L. Journal of Agricultural Research 1: 001-004.

Cisneros-de la Cruz DJ, Martínez?Castillo J, Herrera?Silveira J, Yáñez?Espinosa L, Ortiz?García, M, Us?Santamaria R, Andrade JL. 2018. Short?distance barriers affect genetic variability of Rhizophora mangle L. in the Yucatan Peninsula. Ecology and Evolution 8: 11083-11099. DOI: https://doi.org/10.1002/ece3.4575

Cornelissen JHC, Diez PC, Hunt R. 1996. Seedling Growth, Allocation and Leaf Attributes in a Wide Range of Woody Plant Species and Types. Journal of Ecology 84: 755-765. DOI: https://doi.org/10.2307/2261337

Cruiziat P, Cochard H, Améglio T. 2002. Hydraulic architecture of trees: main concepts and results. Annals of Forest Science 59: 723-752. DOI: https://doi.org/10.1051/forest:2002060

Dissanayake NP, Madarasinghe SK, Jayatissa LP, Koedam N. 2014. Preliminary study on the propagule dependency of Rhizophora seedlings. Journal of the Department of Wildlife Conservation 2: 141-151.

Donovan LA, Ehleringer JR. 1991. Ecophysiological differences among juvenile and reproductive plants of several woody species. Oecologia 86: 594-597. DOI: https://doi.org/10.1007/BF00318327

Duke NC, Pinzon MZS. 1992. Aging Rhizophora seedlings from leaf scar nodes: A technique for studying recruitment and growth in mangrove forests. Biotropica 24: 173-186. DOI: https://doi.org/10.2307/2388671

Ellison AM, Farnsworth EJ. 1997. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112: 435-446. DOI: https://doi.org/10.1007/s004420050330

Ewers FW, Ewers JM, Jacobsen AL, López-Portillo J, 2007. Vessel redundancy: Modeling safety in numbers. IAWA J. 28, 373-388. DOI: https://doi.org/10.1163/22941932-90001650

Farnsworth EJ. 2004. Hormones and shifting ecology throughout plant development. Ecology 85: 5-15. DOI: https://doi.org/10.1890/02-655

Farnsworth EJ, Ellison AM. 1996. Sun-shade adaptability of the red mangrove, Rhizophora mangle (Rhizophoraceae): Changes through ontogeny at several levels of biological organization. American Journal of Botany 83: 1131-1143. DOI: https://doi.org/10.2307/2446196

Feller IC. 1996. Effects of nutrient enrichment on leaf anatomy of dwarf Rhizophora mangle L. (red mangrove). Biotropica 28: 13-22. DOI: https://doi.org/10.2307/2388767

Feller IC, Sitnik M. 1996. Mangrove ecology: A manual for a field course. Washington, DC: Smithsonian Institute.

Feller IC, McKee KM, Whigham DF, O’Neill JP. 2003. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62: 145-175. DOI: https://doi.org/10.1023/A:1021166010892

Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC. 2010. Biocomplexity in mangrove ecosystems. Annual Review of Marine Sciences 2: 395-417. DOI: https://doi.org/10.1146/annurev.marine.010908.163809

Gil-Pelegrín E, Aranda I, Peguero-Pina JJ, Vilagrosa A. 2005. El continuo suelo-planta-atmósfera un modelo integrador de la ecofisiología vegetal. Investigación Agraria Sistemas y Recursos Forestales 14: 358-370. DOI: http://dx.doi.org/10.5424/srf/2005143-00927

Guillén-Rivera BE, López-Portillo Guzmán JA, Pérez-Sánchez E. 2021. Atributos funcionales de plántulas de mangle bajo condiciones ambientales contrastantes. Kuxulkab' 27: 37-46. DOI: https://doi.org/10.19136/kuxulkab.a27n57.3690

Guet J, Fichot R, Lédée C, Laurans F, Cochard H, Delzon S, Bastien C, Brignolas F. 2015. Stem xylem resistance to cavitation is related to xylem structure but not to growth and water-use efficiency at the within-population level in Populus nigra L. Journal of Experimental Botany 66: 4643-4652. DOI: https://doi.org/10.1093/jxb/erv232

Hao GY, Jones TJ, Luton C, Zhang YJ, Manzane E, Scholz FG, Bucci SJ, Cao KF, Goldstein G. 2009. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: Impacts on hydraulic architecture and gas exchange. Tree Physiology 29: 697-705. DOI: https://doi.org/10.1093/treephys/tpp005

Herrera-Silveira JA. 1994. Spatial heterogeneity and seasonal patterns in a tropical coastal lagoon. Journal of Coastal Research 10: 738-746. DOI: http://www.jstor.org/stable/4298266

Herrera-Silveira JA, Teutli-Hernández C, Zaldívar-Jiménez A, Pérez-Ceballos R, Cortés-Balán, O, Osorio-Moreno I, Ramírez-Ramírez J, Caamal-Sosa J, Andueza-Briceño MT, Torres R y Hernández-Aranda H. 2014. Programa regional para la caracterización y el monitoreo de ecosistemas de manglar del Golfo de México y Caribe Mexicano: Península de Yucatán. Centro de Investigación y de Estudios Avanzados-Mérida. Informe final SNIB-CONABIO, proyecto No. FN009. México DF. México. http://www.snib.mx/iptconabio/resource?r=SNIB-FN009. (accessed January10, 2013).

Ishida A, Yazaki K, Hoe AL. 2005. Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantea. Tree Physiology 25: 513-522. DOI: https://doi.org/10.1093/treephys/25.5.513

Jiang GF, Goodale UM, Liu YY, Hao GY, Cao KF. 2017. Salt management strategy defines the stem and leaf hydraulic characteristics of six mangrove tree species. Tree Physiology 37: 389-401. DOI: https://doi.org/10.1093/treephys/tpw131

Jones HG. 2013. Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge: Cambridge University Press. ISBN: 978-051-1845-72-7

Kodikara KAS, Jayatissa LP, Huxham M, Dahdouh-Guebas F, Koedam N. 2017. The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Botanica Brasilica 32: 37-46. DOI: https://doi.org/10.1590/0102-33062017abb0100

Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SML, Sousa WP. 2008. Environmental driver in mangrove establishment and early development: A review. Aquatic Botany 89: 105-127. DOI: https://doi.org/10.1016/j.aquabot.2007.12.014

Lechthaler S, Robert EMR, Tonné N, Prusova A, Gerkema E, Van As H, Koedam N, Windt CW. 2016. Rhizophoraceae mangrove saplings use hypocotyl and leaf water storage capacity to cope with soil water salinity changes. Frontiers in Plant Science 7: 1-13. DOI: https://doi.org/10.3389/fpls.2016.00895

Lin G, Sternberg LDSL. 1992. Comparative study of water uptake and photosynthetic gas exchange between scrub and fringe red mangroves, Rhizophora mangle L. Oecologia 90: 399-403. DOI: https://doi.org/10.1007/BF00317697

López-Portillo J, Ezcurra E. 2002. Los manglares de México: una revisión. Madera y Bosques 8: 27-51. DOI: https://doi.org/10.21829/myb.2002.801290

López-Portillo J, Ewers FW, Angeles G. 2005. Sap salinity effects on xylem conductivity in two mangrove species. Plant, Cell & Environment 28: 1285-1292. DOI: https://doi.org/10.1111/j.1365-3040.2005.01366.x

Lovelock CE, Feller IC, Ball MC, Engelbrecht BMJ, Ewe ML. 2006. Differences in plant function in phosphorus- and nitrogen-limited mangrove ecosystems. New Phytologist 172: 514-522. DOI: https://doi.org/10.1111/j.1469-8137.2006.01851.x

Lugo AE, Snedaker SC. 1974. The Ecology of Mangroves. Annual Review of Ecology and Systematics 5: 39-64. DOI: https://doi.org/10.1146/annurev.es.05.110174.000351

Lugo AE, Medina E, Cuevas E, Cintrón G, Nieves ENL, Novelli YS. 2007. Ecophysiology of a mangrove forest in Jobos Bay, Puerto Rico. Caribbean Journal of Science 43: 200-219.

Marks OC. 2007. The causes of variation in tree seedling traits: the roles of environmental selection versus chance. Evolution 61: 455-469. DOI: https://doi.org/10.1111/j.1742-4658.2007.00021.x

McCulloh KA, Sperry JS. 2005. Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiology 25: 257-267. DOI: https://doi.org/10.1093/treephys/25.3.257

Melcher PJ, Goldstein G, Meinzer FC, Yount DE, Jones TJ, Holbrook NM, Huang CX. 2001. Water relations of coastal and estuarine Rhizophora mangle: Xylem pressure potential and dynamics of embolism formation and repair. Oecologia 126: 182-192. https://doi.org/10.1007/s004420000519

Naidoo G. 2006. Factors Contributing to dwarfing in the mangrove Avicennia marina. Annals of Botany 97: 1095-1101. DOI: https://doi.org/10.1093/aob/mcl064

Naidoo G. 2010. Ecophysiological differences between fringe and dwarf Avicennia marina man2groves. Trees 24: 667-673. DOI: https://doi.org/10.1007/s00468-010-0436-7

Peters R, Walther M, Lovelock C, Jiang J, Berger U. 2020. The interplay between vegetation and water in mangroves: new perspectives for mangrove stand modelling and ecological research. Wetlands Ecology and Management 28: 697-712. DOI: https://doi.org/10.1007/s11273-020-09733-0

Reef R, Lovelock CE. 2015. Regulation of water balance in mangroves. Annals of Botany 115: 385-395. DOI: https://doi.org/10.1093/aob/mcu174

Robert EMR, Koedam N, Beeckman H, Schmitz N. 2009. A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. Functional Ecology 23: 649-657. DOI: https://doi.org/10.1111/j.1365-2435.2009.01551.x

Rodríguez-Zúñiga MT, Troche-Souza C, Vázquez-Lule AD, Márquez-Mendoza JD, Vázquez-Balderas B, Valderrama-Landeros L, Velázquez-Salazar S, Cruz-López MI, Ressl R, Uribe-Martínez A, Cerdeira-Estrada S, Acosta-Velázquez J, Díaz C. 2013. Manglares de México/Extensión, Distribución y Monitoreo. México, DF: Comisión Nacional para el Conocimiento y Uso de la biodiversidad. ISBN: 978-607-8328-02-4

Rosell JA, Olson ME, Anfodillo, T. 2017. Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Current Forestry Report 3: 46-59. DOI: https://doi.org/10.1007/s40725-017-0049-0

Ruzin SE. 1999. Plant microtechnique and microscopy. USA, New York: Oxford University Press. ISBN: 0-19-508956-1

Schmitz N, Verheyden A, Beeckman H, Kairo JG, Koedam N. 2006a. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Annals of Botany 98: 1321-1330. DOI: https://doi.org/10.1093/aob/mcl224

Schmitz N, Verheyden A, De Ridder F, Beeckman H, Koedam N. 2006b. Hydraulic architecture of the mangrove Rhizophora mucronata under different salinity and flooding conditions. In: Heinrich I, Gärtner H, Monbaron M, Schleser GH, eds. TRACE (Tree Rings in Archaeology, Climatology and Ecology), vol. 4: Proceedings of the Dendrosymposium 2005. Fribourg: Switzerland, pp. 180-187.

Schreel JDM, Van de Wal BAE, Hervé?Fernandez P, Boeckx P, Steppe K. 2019. Hydraulic redistribution of foliar absorbed water causes turgor?driven growth in mangrove seedlings. Plant, Cell & Environment 42: 2437-2447. DOI: https://doi.org/10.1111/pce.13556

Shiau YJ, Lee SC, Chen TH, Tian G, Chiu CY. 2017. Water salinity effects on growth and nitrogen assimilation rate of mangrove (Kandelia candel) seedlings. Aquatic Botany 137: 50-55. DOI: https://doi.org/10.1016/j.aquabot.2016.11.008

Smith SM, Snedaker SC. 2000. Hypocotyl Function in Seedling Development of the Red Mangrove, Rhizophora mangle L. Biotropica 32: 677-685. DOI: https://doi.org/10.1646/0006-3606(2000)032[0677:HFISDO]2.0.CO;2

Sobrado MA. 2007. Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytologist 173: 584-591. DOI: https://doi.org/10.1111/j.1469-8137.2006.01927.x

Sobrado MA, Ewe SML. 2006. Ecophysiological characteristics of Avicennia germinans and Laguncularia racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon, Florida. Trees 20: 679-687. DOI: https://doi.org/10.1007/s00468-006-0083-1

Sperry JS, Donnelly JR, Tyree MT. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment 11: 35-40. DOI: https://doi.org/10.1111/j.1365-3040.1988.tb01774.x

Tomlinson P. 2016. The Botany of Mangroves. . Cambridge: Cambridge University Press. ISBN: 978-1-107-08067-6

Tyree M. 2003. Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees. Trees 17: 95-100. DOI: https://doi.org/10.1007/s00468-002-0227-x

Tyree M, Ewers F. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360. DOI: https://doi.org/10.1111/j.1469-8137.1991.tb00035.x

Tyree M, Zimmermann MH. 2002. Xylem Structure and the Ascent of Sap. Berlin: Springer. ISBN: 3540433546

Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero JJ, Corcuera L, Sisó S, Gil-Pelegrín E. 2004. Ecología del Bosque Mediterráneo en un Mundo Cambiante. Madrid: Ministerio de Medio Ambiente, EGRAF, SA. ISBN: 84-8014-552-8

Vargas-Cruz M, Mori GM, Signori-Müller C, Da Silva CC, Oh D, Dassanayake M, Zucchi MI, Silva-Oliveira R, Pereira-Souza A. 2019. Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Scientific Reports 9: 19936. DOI: https://doi.org/10.1038/s41598-019-56469-w

Wang W, Yan Z, You S, Zhang Y, Chen L, Lin, G. 2011. Mangroves: obligate or facultative halophytes? A review. Trees 25: 953-963. DOI: https://doi.org/10.1007/s00468-011-0570-x

Xiao Y, Jie Z, Wang M, Lin G, Wang W. 2009. Leaf and stem anatomical responses to periodical waterlogging in simulated tidal floods in mangrove Avicennia marina seedlings. Aquatic Botany 91: 231-237. https://doi.org/10.1016/j.aquabot.2009.07.001

Yan Z, Wang W, Tang D. 2007. Effect of different time of salt stress on growth and some physiological processes of Avicennia marina seedlings. Marine Biology 152: 581-587. DOI: https://doi.org/10.1007/s00227-007-0710-4

Yáñez-Espinosa L, Flores J. 2011. A review of sea-level rise effect on mangrove forest species: anatomical and morphological modifications. Chapter 15. In: Casalegno S. ed. Global Warming Impacts - Case Studies on the Economy, Human Health and on Urban and Natural Environments. London: Intechopen, pp. 253-276. ISBN: 978-953-307-785-7

Yáñez-Espinosa L, Terrazas T, López-Mata L. 2001. Effects of flooding on wood and bark anatomy of four species in a mangrove forest community. Trees 15: 91-97. DOI: https://doi.org/10.1007/s004680000081

Zaldívar-Jiménez A, Herrera-Silveira J, Alonzo-Parra D. 2004. Estructura y productividad de los manglares en la reserva de biosfera Ría Celestún, Yucatán, México. Madera y Bosques Número especial: 25-35. DOI: https://doi.org/10.21829/myb.2004.1031264

Zaldívar-Jiménez MA, Herrera-Silveira JA, Teutli-Hernández C, Comín FA, Andrade JL, Molina CC, Ceballos RP. 2010. Conceptual framework for mangrove restoration in the Yucatán Peninsula. Ecological Restoration 28: 333-342. DOI: https://doi.org/10.3368/er.28.3.333

Published
2021-12-14
How to Cite
Cisneros-de la Cruz, D. J., Yáñez-Espinosa, L., Reyes-García, C., Us-Santamaría, R., & Andrade, J. L. (2021). Hydraulic architecture of seedlings and adults of Rhizophora mangle L. in fringe and scrub mangrove. Botanical Sciences, 100(2), 370-382. https://doi.org/10.17129/botsci.2906
Section
PHYSIOLOGY / FISIOLOGÍA