Biodiversity-productivity relationship in urban vascular flora: a comparison between wild edible and non-edible plants

keywords: assembly mechanism, community ecology, phylogenetic diversity, urban flora, wild edible plants

Abstract

Background: Wild edible plants are species that are not cultivated but can be consumed as food. These plants may exhibit the highest taxonomic and phylogenetic diversity within urban floras, since they have a longer history of use associated with humans than non-edible plants. Also, because biodiversity is strongly associated with biomass, edible plants plant might show higher productivity (biomass per site) than non-edible plants.

Questions: Is taxonomic and phylogenetic diversity of wild edible plants higher than non-edibles within urban areas? Is the alpha-biodiversity of wild edible plants positively related to biomass productivity in urban areas?

Study sites and years of study: Cities of the coastal Mediterranean-type ecosystem, central Chile, 2015 and 2016.

Methods: We characterized the taxonomic and phylogenetic diversity of urban flora differentiating wild edible and non-edible plants. Then, we assessed whether alpha-diversity of assemblages is related to their biomass productivity.

Results: Both taxonomic and phylogenetic diversity were higher for edibles than non-edible plants. For edible plants, biomass was positively related to species richness and negatively with the mean phylogenetic diversity (MPD, a measure of evolutionary relationship among plants within an assemblage).

Conclusions: Species richness is a suitable proxy to estimate wild edible plant diversity and their biomass in cities surpassing other proxies, such as phylogenetic diversity. Negative effect of MPD on biomass suggests that only a subgroup of related plants, possibly highly adapted to urban conditions, contribute to edible plant production. The distinction between wild edible and non-edible plants offers a better understanding of the assembly rules and biodiversity-biomass relationship within urban floras.

Downloads

Download data is not yet available.
Biodiversity-productivity relationship in urban vascular flora: a comparison between wild edible and non-edible plants

References

Armesto JJ, Manuschevich D, Mora A, Smith-Ramirez C, Rozzi R, Abarzúa AM, Marquet PA. 2010. From the Holocene to the Anthropocene: a historical framework for land cover change in Southwestern South America in the past 15,000 years. Land Use Policy 27: 148-160. DOI: https://doi.org/10.1016/j.landusepol.2009.07.006

Bolund P, Hunhammar S. 1999. Ecosystem services in urban areas. Ecological Economics 29: 293-301. DOI: https://doi.org/10.1016/S0921-8009(99)00013-0

Cadotte MW. 2013. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proceedings of the National Academy of Sciences of the USA 110: 8996-9000. DOI: https://doi.org/10.1073/pnas.1301685110

Cadotte MW, Cardinale B, Oakley TH. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the USA 105: 17012-17017. DOI: https://doi.org/10.1073/pnas.0805962105

Clemants SE, Moore G. 2003. Patterns of species diversity in eight north-eastern United States cites. Urban Habitats 1: 4-16.

Cordero S, Abello L, Galvez F. 2017. Plantas silvestres comestibles y medicinales de Chile y otras partes del mundo. Chile: Concepción, Corporación Chilena de la Madera. ISBN:978-956-8398-10-1

Cordero S, Gálvez F, Arenas J, Rodríguez-Valenzuela E. 2020. Does access to natural environments explain differences in the use of wild plants between rural and urban populations? Botanical Sciences 99: 104-123. DOI: https://doi.org/10.17129/botsci.2622

Corlett JL, Clegg MS, Keen CL, Grivetti LE. 2002. Mineral content of culinary and medicinal plants cultivated by Hmong refugees living in Sacramento, California. International Journal of Food Sciences and Nutrition 53: 117-128. DOI: https://doi.org/10.1080/09637480220132139

Davies TJ, Kraft NJB, Salamin N, Wolkovich EM. 2012. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism. Ecology 93: 242-247. DOI: https://doi.org/10.1890/11-1360.1

Di Castri F, Hajek E. 1976. Bioclimatología de Chile. Santiago: Universidad Católica de Chile. ISBN: 9502908228.

Díaz-Betancourt M, Ghermandi L, Ladio A, López-Moreno IR, Raffaele E, Rapoport EH. 1999. Weeds as a source for human consumption. A comparison between tropical and temperate Latin American. Revista de Biología Tropical 47: 329-338.

Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1-10. DOI: https://doi.org/10.1016/0006-3207(92)91201-3

Figueroa JA, Teillier S, Guerrero-Leiva N, Ray-Bobadilla C, Rivano S, Saavedra D, Castro SA. 2016. Vascular flora in public spaces of Santiago, Chile. Gayana Botanica 73: 85-103. DOI: https://doi.org/10.4067/S0717-66432016000100011

Fischer LK, Rodorff V, von der Lippe M, Kowarik I. 2016. Drivers of biodiversity patterns in parks of a growing South American megacity. Urban Ecosystems 19: 1231-1249. DOI: https://doi.org/10.1007/s11252-016-0537-1

Fuentes N, Pauchard A, Sánchez P, Esquivel J, Marticorena A. 2013. A new comprehensive database of alien plant species in Chile based on herbarium records. Biological Invasions 15: 847-858. DOI: https://doi.org/10.1007/s10530-012-0334-6

Gartner E, Rojas G, Castro SA. 2015. Compositional patterns of ruderal herbs in Santiago, Chile. Gayana Botanica 72: 192-202. DOI: http://dx.doi.org/10.4067/S0717-66432015000200003

Gay C. 1845-1854. Historia física y política de Chile. Botánica (Flora chilena). 8 Volumes, 1 Atlas.Chile: Santiago, France: Paris.

Gotelli N, Colwell R. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391. DOI: https://doi.org/10.1046/j.1461-0248.2001.00230.x

Grime JP. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344-347. DOI: https://doi.org/10.1038/242344a0

GRIN [Germplasm resources information network]. 2015. USA: Agricultural Research Service. https://goo.gl/zvmy7y/ (accessed March 15, 2016).

Guil-Guerrero JL. 2001. Nutritional composition of Plantago species (P. major L., P. lanceolata L., and P. media L.). Ecology of Food and Nutrition 40: 481-495. DOI: https://doi.org/10.1080/03670244.2001.9991663

Guil-Guerrero JL, Gimenez JJ, Torija ME. 1998. Mineral nutrient composition of edible wild plants. Journal of Food Composition and Analysis 11: 322-328. DOI: https://doi.org/10.1006/jfca.1998.0594

Hahs AK, McDonnell MJ, McCarthy MA, Vesk PA, Corlett RT, Norton BA, Clemants SE, Duncan RP, Thompson K, Schwartz M, Williams NS. 2009. A global synthesis of plant extinction rates in urban areas. Ecology Letters 12: 1165-1173. DOI: https://doi.org/10.1111/j.1461-0248.2009.01372.x

Heywood V. 1999. Use and potential of wild plants in farm households. Italy: FAO Farm Systems Management Series. ISBN: 978-9251041512

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. DOI: https://doi.org/10.1002/joc.1276

Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilá M, Zamora R, Zobel M. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography 15: 1-17. DOI: https://doi.org/10.1111/j.1466-822X.2006.00212.x

Hsieh TC, Ma KK, Chao A. 2016. iNEXT: a R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451-1456. DOI: https://doi.org/10.1111/2041-210X.12613

INE [Instituto Nacional de Estadísticas]. 2007. División político administrativa y censal - Región de Valparaíso. Chile: Instituto Nacional de Estadísticas. https://goo.gl/Pxbfck/ (accessed December 20, 2016).

Joos-Vandewalle S. 2015. The effects of urbanisation on non-timber forest product dependencies. MSc. Thesis. University of Cape Town.

Kembel S, Ackerly D, Blomberg S, Cornwell W, Cowan P, Helmus M, Morlon H, Webb C. 2014. Package ‘picante’. https://goo.gl/1VHpQu (accessed December 1, 2016).

Kendal D, Dobbs C, Gallagher RV, Beaumont LJ, Baumann J, Williams NSG, Livesley SJ. 2018. A global comparison of the climatic niches of urban and native tree populations. Global Ecology and Biogeography 27: 629-637. DOI: https://doi.org/10.1111/geb.12728

Knapp S, Dinsmore L, Fissore C, Hobbie SE, Jacobsdottir I, Kattge J, King JY, Klotz S, Macfadden J, Cavender-Bares J. 2012. Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 93: S83-S98. DOI: https://doi.org/10.1890/11-0392.1

Knapp S, Kühn I, Schweiger O, Klotz S. 2008. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecology Letters 11: 1054-1064. DOI: https://doi.org/10.1111/j.1461-0248.2008.01217.x

Kowarik I. 2011. Novel urban ecosystems, biodiversity, and conservation. Enviromental Pollution 159: 1974-1983. DOI: https://doi.org/10.1016/j.envpol.2011.02.022

Kunkel G. 1984. Plants for human consumption. Koenigstein: Koeltz Scientific Books. ISBN: 9783874292160

Ladio A. 2005. Malezas exóticas comestibles y medicinales utilizadas en poblaciones del noroeste patagónico: aspectos etnobotánicos y ecológicos. Boletín Latinoamericano y del Caribe de Plantas Tropicales 4: 75-80.

Ladio A, Rapoport E. 2002. La variación estacional de las plantas silvestres comestibles en baldíos suburbanos de Bariloche, Parque Nacional Nahuel Huapi, Patagonia, Argentina. Vida Silvestre Neotropical 11: 33-41.

Lososová Z, Chytrý M, Kühn I, Hájek O, Horáková V, Pyšek P, Tichý L. 2006. Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspectives in Plant Ecology 8: 69-81. DOI: https://doi.org/10.1016/j.ppees.2006.07.001

Lososová Z, Chytrý M, Danihelka J, Tichý L, Ricotta C. 2016. Biotic homogenization of urban floras by alien species: the role of species turnover and richness differences. Journal of Vegetation Science 27: 452-459. DOI: https://doi.org/10.1111/jvs.12381

Lososová Z, Tichý L, Divíšek D, ?eplová N, Danihelka J, D?evojan P, Fajmon K, Kalníková V, Kalusová V, Novák P, ?eho?ek V, Wirth T, Chytrý M. 2018. Projecting potential future shifts in species composition of European urban plant communities. Diversity and Distributions 24: 765-775. DOI: https://doi.org/10.1111/ddi.12725

Luebert F, Pliscoff P. 2006. Sinopsis bioclimática y vegetacional de Chile. Santiago: Editorial Universitaria. ISBN: 9789561125759

Lumley T, Scott A. 2017. Fitting Regression Models to Survey Data. Statistical Science 32: 265-278. DOI: https://doi.org/10.1214/16-STS605

Mack RN, Lonsdale WM. 2001. Humans as global plant dispersers: getting more than we bargained for: current introductions of species for aesthetic purposes present the largest single challenge for predicting which plant immigrants will become future pests. Bioscience 51: 95-102. DOI: https://doi.org/10.1641/0006-3568(2001)051[0095:HAGPDG]2.0.CO;2

MacKey B, Berry S, Hugh S, Ferrier S, Harwood TD, Williams KJ. 2012. Ecosystem greenspots: identifying potential drought, fire, and climate-change micro-refuges. Ecological Applications 22: 1852-1864. DOI: https://doi.org/10.1890/11-1479.1

Matthei O. 1995. Manual de las malezas que crecen en Chile. Chile, Santiago: Alfabeta Impresores. ISBN: 9789562722148.

McKinney ML. 2006. Urbanization as a major cause of biotic homogenization. Biological Conservation 127: 247-260. DOI: https://doi.org/10.1016/j.biocon.2005.09.005

Miller ET, Farine DR, Trisos CH. 2017. Phylogenetic community structure metrics and null models: a review with new methods and software. Ecography 40: 461-477. DOI: https://doi.org/10.1111/ecog.02070

Myers N, Mittermeier R, Mittermeier C, da Fonseca G, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858. DOI: https://doi.org/10.1038/35002501

Nagendra H, Gopal D. 2011. Tree diversity, distribution, history and change in urban parks: studies in Bangalore, India. Urban Ecosystems 14: 211-223. DOI: https://doi.org/10.1007/s11252-010-0148-1

Peet RK. 1974. The measurement of species diversity. Annual Review of Ecology and Systematics 5: 285-307. DOI: https://doi.org/10.1146/annurev.es.05.110174.001441

PFAF [Plants for a future]. 2015. Edible, medicinal and useful plants for a healthier world. http://pfaf.org/ (accessed March 15, 2016).

Penafiel D, Lachat C, Espinel R, Van Damme P, Kolsteren P. 2011. A systematic review on the contributions of edible plant and animal biodiversity to human diets. EcoHealth 8: 381-399. DOI: https://doi.org/10.1007/s10393-011-0700-3

Rangel-Landa S, Casas A, García-Frapolli E, Lira R. 2017. Sociocultural and ecological factors influencing management of edible and non-edible plants: the case of Ixcatlan, Mexico. Journal of Ethnobiology and Ethnomedicine 13: 59. DOI: https://doi.org/10.1186/s13002-017-0185-4

Rapoport E, Marzocca A, & Drausal B. 2009. Malezas comestibles del cono sur y otras partes del planeta. Bariloche: Ediciones Instituto Nacional de Tecnología Agropecuaria. ISBN: 9789872505097.

Ricotta C, La Sorte FA, Pyšek P, Rapson G, Celesti-Grapow L, Thompson K. 2012a. Phyloecology of urban alien flora. Journal of Ecology 97: 1243-1251. DOI: https://doi.org/10.1111/j.1365-2745.2009.01548.x

Ricotta C, La Sorte F, Pyšek P, Rapson G, Celesti-Grapow L, Thompson K. 2012b. Phylogenetic beta diversity of native and alien species in European urban floras. Global Ecology and Biogeography 21: 751-759. DOI: https://doi.org/10.1111/j.1466-8238.2011.00715.x

Rodríguez R, Marticorena C, Alarcón D, Baeza C, Cavieres L, Finot VL, Fuentes N, Kiessling A, Mihoc M, Pauchard A, Ruíz E, Sanchez P, Marticorena A. 2018. Catálogo de las plantas vasculares de Chile. Gayana Botánica 75: 1-430. DOI: https://dx.doi.org/10.4067/S0717-66432018000100001

Romojaro A, Botella M, Obón C, Pretel M. 2013. Nutritional and antioxidant properties of wild edible plants and their use as potential ingredients in the modern diet. International Journal of Food Sciences and Nutrition 64: 944-952. DOI: https://doi.org/10.3109/09637486.2013.821695

Sandau N, Fabian Y, Bruggisser OT, Rohr RP, Naisbit RE, Kehrli P, Aebi A, Bersier L-F. 2017. The relative contributions of species richness and species composition to ecosystem functioning. Oikos 126: 782-791. DOI: https://doi.org/10.1111/oik.03901

Seddon AWR, Marcias-Fauria M, Long PR, Benz D, Willis KJ. 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531: 229-232. DOI: https://doi.org/10.1038/nature16986

SEPASAL [Survey of economic plants for arid and semiarid regions]. 2016. UK https://cgspace.cgiar.org/handle/10568/48722 (accessed March 15, 2016).

Swenson NG. 2009. Phylogenetic resolution and quatifying the phylogenetic diversity and dispersion of communities. Public Library of Science 4: e4390. DOI: https://doi.org/10.1371/journal.pone.0004390

Tardío J. 2010. Spring is coming: the gathering and consumption of wild vegetables in Spain. In: Pardo de Santayana M, Pieroni A, Puri R, eds, Ethnobotany in the New Europe: People, health and wild plant resources. UK: Berghahn Press, pp. 211-238. DOI: https://doi.org/10.1080/00207233.2010.544068

Termote C, Meyi MB, Djailo BD, Huybregts L, Lachat C, Kolsteren P, Van Damme P. 2012. A biodiverse rich environment does not contribute to a better diet: a case study from DR Congo. Public Library of Science 7: e30533. DOI: https://doi.org/10.1371/journal.pone.0030533

Tucker CM, Cadotte MW, Carvalho SB, Davies TJ., Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F. 2016. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92: 698-715. DOI: https://doi.org/10.1111/brv.12252

Turan M, Kordali S, Zengin H, Dursun A, Sezen Y. 2003. Macro and Micro mineral content of some wild edible leaves consumed in eastern Anatolia. Acta Agriculturae Scandinavica B-Soil & Plant Science 53: 129-137. DOI: https://doi.org/10.1080/090647103100095

Turner NJ, ?uczaj ?, Migliorini P, Pieroni A, Dreon AL, Sacchetti L, Paoletti M. 2011. Edible and tended wild plants, traditional ecological knowledge and agroecology. Critical Reviews in Plant Science 30: 198-225. DOI: https://doi.org/10.1080/07352689.2011.554492

Wang HF, López-Pujol LA, Mayerson JX, Qiu XK, Wang XK, Ouyang ZY. 2011. Biological invasions in rapidly urbanizing areas: a case study of Beijing, China. Biodiversity and Conservation 20: 2483-2509. DOI: https://doi.org/10.1007/s10531-011-9999-x

Webb C, Donoghue M. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Resources 5: 181-183. DOI: https://doi.org/10.1111/j.1471-8286.2004.00829.x

Webb C. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist 156: 145-155.

Zanne AE, Tank DC, Cornwell WK. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89-92. DOI: https://doi.org/10.1038/nature12872

Zhao JJ, Ouyang ZY, Xu WH, Zheng H, Meng XS. 2010. Sampling adequacy estimation for plant species composition by accumulation curves-A case study of urban vegetation in Beijing, China. Landscape and Urban Planning 95: 113-121. DOI: https://doi.org/10.1016/j.landurbplan.2009.12.008

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GA. 2009. Mixed effects models and extensions in ecology with R. NY: Springer Science+Business Media.

Published
2021-10-01
How to Cite
Cordero, S., Galvez, F., & Carvallo, G. O. (2021). Biodiversity-productivity relationship in urban vascular flora: a comparison between wild edible and non-edible plants. Botanical Sciences, 100(1), 107-119. https://doi.org/10.17129/botsci.2892
Section
ECOLOGY / ECOLOGÍA