Domestication reduces phenotypic plasticity in chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst)

  • Miguel A. Munguía-Rosas Laboratorio de Ecología Terrestre, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mérida https://orcid.org/0000-0003-2319-1666
keywords: Artificial selection, crop domestication, light environment, reaction norms, yield stability, Yucatan

Abstract

Background: Natural selection optimizes phenotypic plasticity in plants found in environmentally variable habitats. However, it is unclear how artificial selection has affected the phenotypic plasticity of crops. Reduced plasticity in crop yield is often considered a desirable feature in cultivated plants; however, limited phenotypic plasticity in this and other traits may also affect the ability of crops to cope with environmental variation.

Study species: Wild and domesticated chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst).

Question: How domestication has affected the phenotypic plasticity of vegetative traits in response to the light environment?

Methods: Leaf area, leaf perimeter, leaf specific area, leaf production, trichome density, stem elongation, growth in stem diameter and slenderness were measured in clones of wild and domesticated plants. These clones were allocated to two contrasting light treatments: fully exposed to sun vs. placement beneath a shade cloth. The phenotypic traits and reaction norms were compared between the genotypes of wild and domesticated plants.

Results: Lower plasticity in leaf production and slenderness was observed in the domesticated compared to the wild plants. Leaf production and slenderness are associated with the shade avoidance syndrome, which was evident in wild plants but not manifested in domesticated plants. Reduced plasticity in leaf production also suggests yield stability.

Conclusion: Artificial selection reduces phenotypic plasticity in the yield of chaya and in its response to variation in light availability.

Downloads

Download data is not yet available.
Domestication reduces phenotypic plasticity in chaya (<em>Cnidoscolus aconitifolius</em> (Mill.) I.M. Johnst)

References

Abdala-Roberts L, Parra-Tabla V. 2005. Artificial defoliation induces trichome production in the tropical shrub Cnidoscolus aconitifolius (Euphorbiaceae). Biotropica 37: 251-257. DOI: https://doi.org/10.1111/j.1744-7429.2005.00034.x

Arceo-Gómez G, Parra-Tabla V, Navarro J. 2009. Changes in sexual expression as result of defoliation and environment in a monoecious shrub in Mexico: Implications for Pollination. Biotropica 41: 435-441. DOI: https://doi.org/10.1111/j.1744-7429.2009.00502.x

Barros FV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, de Lemus-Filho JP. 2011. Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology 14: 208-215. DOI: https://doi.org/10.1111/j.1438-8677.2011.00474.x

Bazzaz FA. 1996. Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge: Cambridge University Press. ISBN: 978-0521391900.

Bradshaw AD. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13: 115-155. DOI: https://doi.org/10.1016/S0065-2660(08)60048-6

Bradshaw AD, Hardwick K. 1989. Evolution and stress-genotypic and phenotypic components. Biological Journal of the Linnean Society 37: 137-155. DOI: https://doi.org/10.1111/j.1095-8312.1989.tb02099.x

Chang J, Sun Y, Tian L, Ji L, Luo S, Nasir F, Kuramae EE, Tian C. 2021. The structure of rhizosphere fungal communities of wild and domesticated rice: Changes in diversity and co-occurrence Patterns. Frontiers in Microbiology 12: 610823. DOI: https://doi.org/10.3389/fmicb.2021.610823

Denham T, Barton H, Castillo C, Crowther A, Dotte-Sarout E, Florin SA, Pritchard J, Barron A, Zhang Y, Fuller DQ. 2020. The domestication syndrome in vegetatively propagated field crops. Annals of Botany 125: 581-597. DOI: https://doi.org/10.1093/aob/mcz212

Des Marais DL, Hernandez KM, Juenger TE. 2013. Genotype-by-environment interaction and plasticity: Exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology Evolution and Systematics 44: 5-29. DOI: https://doi.org/10.1146/annurev-ecolsys-110512-135806

Doebley J, Stec A. 1991. Genetic analysis of the morphological differences between maize and teosinte. Genetics 129: 285-295.

Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386: 485-488. DOI: https://doi.org/10.1038/386485a0

Doust AN, Kellogg EA. 2006. Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae). Molecular Ecology 15: 1335-1349. DOI: https://doi.org/10.1111/j.1365-294X.2005.02791.x

Egan PA, Adler LS, Irwin RE, Farrell IW, Palmer-Young EC, Stevenson PC. 2018. Crop domestication alters floral reward chemistry with potential consequences for pollinator health. Frontiers in Plant Sciences 9: 1357. DOI: https://doi.org/10.3389/fpls.2018.01357

Franklin KA. 2008. Shade avoidance. New Phytologist 179: 930-944. DOI: https://doi.org/10.1111/j.1469-8137.2008.02507.x

Hammer K. 1984. Das domestikationssyndrom. Kulturpflanze 32:11-14. https://doi.org/10.1007/BF02098682

Harlan JR (1975) Crops and Man. Madison: American Society of Agronomy. ISBN: 0891181423.

Gallardo M, Jackson LE, Thompson RE. 1996. Shoot and root physiological responses to localized zones of soil moisture in cultivated and wild lettuce (Lactuca spp.). Plant Cell and Environment 19: 1169-1178. DOI: https://doi.org/10.1111/j.1365-3040.1996.tb00432.x

Griffith TM, Sultan SE. 2005. Shade tolerance plasticity in response to neutral vs green shade cues in k species of contrasting ecological breadth. New Phytologist 166: 141-148. DOI: https://doi.org/10.1111/j.1469-8137.2004.01277.x

Ladizinsky G. 1998. Plant Evolution under Domestication. Dordrecht: Springer & Business Media. ISBN: N 978-94-010-5903-9. DOI: https://doi.org/10.1007/978-94-011-4429-2

Matesanz S, Milla R. 2018. Differential plasticity to water and nutrients between crops and their wild progenitors. Environmental and Experimental Botany 145: 54-63. DOI: https://doi.org/10.1016/j.envexpbot.2017.10.014

Maya-Lastra CA, Steinmann. 2019. Evolution of the untouchables: Phylogenetics and classification of Cnidoscolus (Euphorbiaceae). Taxon 68: 692-713. DOI: https://doi.org/10.1002/tax.12093

McKey D, Elias M, Pujol B, Duputié A. 2010. The evolutionary ecology of clonally propagated domesticated plants. New Phytologist 186: 318-332. DOI: https://doi.org/10.1111/j.1469-8137.2010.03210.x

Ménard L, McKey D, Muhlen GS, Vlair B, Rowe NP. 2013. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness. Plos One 8: e74727. DOI: https://doi.org/10.1371/journal.pone.0074727

Meyer RS, DuVal AE, Jensen HR. 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist 196: 29-48. DOI: https://doi.org/10.1111/j.1469-8137.2012.04253.x

Morrissey MB, Liefting M. 2016. Variation in reaction norms: Statistical considerations and biological interpretation. Evolution 70: 1944-1959. DOI: https://doi.org/10.1111/evo.13003

Munguía-Rosas MA, Jácome-Flores ME, Bello-Bedoy R. Solís-Montero V, Ochoa-Estrada E. 2019. Morphological divergence between wild and cultivated chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst). Genetic Resources and Crop Evolution 66: 1389-1398. DOI: https://doi.org/10.1007/s10722-019-00790-w

Munguía-Rosas MA, Jácome-Flores ME. 2020. Reproductive isolation between wild and domesticated chaya (Cnidoscolus aconitifolius) in sympatry. Plant Biology 22: 932-938. DOI: https://doi.org/10.1111/plb.13140

Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, va Kleunen M. 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Sciences 15: 684-692. DOI: https://doi.org/10.1016/j.tplants.2010.09.008

Parra-Tabla V, Rico-Gray V, Carbajal M. 2004. Effect of defoliation on leaf growth, sexual expression and reproductive success of Cnidoscolus aconitifolius (Euphorbiaceae). Plant Ecology 173: 153-160. DOI: https://doi.org/10.1023/B:VEGE.0000029318.68342.b1

Peltonen-Sainio P, Jauhiainen L, Sadras VO. 2011. Phenotypic plasticity of yield and agronomic traits in cereals and rapeseed at high latitudes. Field Crop Research 124: 261-269. DOI: https://doi.org/10.1016/j.fcr.2011.06.016

Piperno DR, Holst I, Winter K, McMillan O. 2015. Teosinte before domestication: Experimental study of growth and phenotypic variability in Late Pleistocene and early Holocene environments. Quaternary International 363: 65-77. DOI: https://doi.org/10.1016/j.quaint.2013.12.049

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/

Ross-Ibarra J. 2003. Origen y domesticación de la chaya (Cnidoscolus aconitifolius Mill I.M., M. Johnst): La espinaca Maya. Mexican Studies 19: 287-302. DOI: https://doi.org/10.1525/msem.2003.19.2.287

Ross-Ibarra J, Molina-Cruz A. 2002. The ethnobotany of chaya (Cnidoscolus aconitifolius SSP. Aconitifolius Breckon): a nutritious Maya vegetable. Economic Botany 56: 350-365. DOI: https://doi.org/10.1663/0013-0001(2002)056[0350:TEOCCA]2.0.CO;2

Schlichting CD, Pigliucci M.1998. Phenotypic Evolution: A Reaction Norm perspective. Sunderland: Sinauer Associates. ISBN: 0 87893 799 4

Schmalhausen II. 1949. Factors of Evolution: The Theory of Stabilizing Selection. Philadenphia: Blakinston. ISBN: 978-0226738741.

Standley PC, Steyermark JA. 1949. Flora of Guatemala, Vol. 24, Part VI. Chicago: Chicago Natural History Museum. ISBN: 978-84-87111-79-2.

Solís-Montero V, Martínez-Natarén DA, Parra-Tabla V, Ibarra-Cerdeña C, Munguía-Rosas MA. 2020. Herbivory and anti-herbivore defences in wild and cultivated Cnidoscolus aconitifolius: disentangling domestication and environmental effects. AoB Plants 12: plaa023. DOI: https://doi.org/10.1093/aobpla/plaa023

Sultan SE. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537-542. DOI: https://doi.org/10.1016/S1360-1385(00)01797-0

Valladares F, Gioali E, Gómez JM. 2007. Ecological limits to plant phenotypic plasticity. New Phytologist 176: 749-763. DOI: https://doi.org/10.1111/j.1469-8137.2007.02275.x

Valladares F, Sánchez-Gómez D, Zavala MA. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94: 1103-1116. DOI: https://doi.org/10.1111/j.1365-2745.2006.01176.x

Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology and Evolution 10: 212-217. DOI: https://doi.org/10.1016/S0169-5347(00)89061-8

Whitehead SR, Turcotte MM, Poveda K. 2017. Domestication impacts on plant-herbivore interactions: a meta-analysis. Phylosophical Transactions of the Royal Society B 132: 20160034. DOI: http://dx.doi.org/10.1098/rstb.2016.0034

Zohary D. 2004. Unconscious selection and the evolution of domesticated Plants. Economic Botany 58: 5-10. DOI: https://doi.org/10.1663/0013-0001(2004)058[0005:USATEO]2.0.CO;2

Published
2021-10-05
How to Cite
Munguía-Rosas, M. A. (2021). Domestication reduces phenotypic plasticity in chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst). Botanical Sciences, 100(1), 93-106. https://doi.org/10.17129/botsci.2879
Section
ECOLOGY / ECOLOGÍA