Forest structural parameters and aboveground biomass in old-growth and secondary forests along an elevational gradient in Mexico

keywords: Conservation, forest fragmentation, forest structure, landscape, Neotropics, succession


Background: Tropical montane forests are important reservoirs of carbon and biodiversity but are threatened by deforestation and climate change. It is important to understand how forest structure and aboveground biomass change along gradients of elevation and succession.

Questions: What are the interactive effect of elevation and two stages of succession on forest structure parameters?

Studied species: Tree communities.

Study site and dates: Cofre de Perote, Veracruz, Mexico. August to December 2015.

Methods: We studied four sites along an elevational gradient (500, 1,500, 2,500, and 3,500 m). At each elevation and each forest type, we established five 20 × 20 m plots (n = 40 plots). Within each plot, we measured stem density, mean diameter at breast height (dbh), and tree height and derived basal area and aboveground biomass (AGB).

Results: AGB peaked at 2,500 m and was significantly related to elevation and succession, with higher values in old-growth forests than in secondary forests at higher altitudes. Lower values of mean dbh and basal area were found at higher elevations. At the lowest elevation, both successional stages had the same values of stem density and AGB. At both lower elevations, secondary forests had higher values of dbh and basal area. There were high biomass stocks in the old-growth forest at 2,500 and 3,500 m.

Conclusions: Old-growth forests at higher elevations are threatened by deforestation, consequently these remaining fragments must be preserved because of their storage capacity for biomass and their ability to mitigate climate change.


Download data is not yet available.
Forest structural parameters and aboveground biomass in old-growth and secondary forests along an elevational gradient in Mexico


Acosta-Mireles M, Vargas-Hernández J, Velázquez-Martínez A, Etchevers-Barra JD. 2002. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia 36: 725-736.

Aiba S, Hanya G, Tsujino R, Takyu M, Seino T, Kimura K, Kitayama K. 2007. Comparative study of additive basal area of conifers in forest ecosystems along elevational gradients. Ecological Research 22: 439-450. DOI:

Aiba S, Kitayama K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology 140: 139-157. DOI:

Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723. DOI:

Álvarez-Yépiz JC, Martínez-Yrízar A, Búrquez A, Lindquist C. 2008. Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in northwestern Mexico. Forest Ecology and Management 256: 355-366. DOI:

Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management 260: 679-691. DOI:

Aplet GH, Vitousek PM. 1994. An age-altitude matrix analysis of Hawaiian rain-forest succession. The Journal of Ecology 82: 137. DOI:

Asbjornsen H, Velázquez-Rosas N, García-Soriano R, Gallardo-Hernández C. 2005. Deep ground fires cause massive above- and below-ground biomass losses in tropical montane cloud forests in Oaxaca, Mexico. Journal of Tropical Ecology 21: 427-434. DOI:

Báez S, Malizia A, Carilla J, Blundo C, Aguilar M, Aguirre N, Aquirre Z, Álvarez E, Cuesta F, Duque Á, Farfán-Ríos W, García-Cabrera K, Grau R, Homeier J, Linares-Palomino R, Malizia LR, Cruz OM, Osinaga O, Phillips OL, Reynel C, Silman MR, Feeley KJ. 2015. Large-scale patterns of turnover and basal area change in Andean forests. PLOS ONE 10: e0126594. DOI:

Balderas-Torres A, Ontiveros-Enríquez R, Skutsch M, Lovett J. 2013. Potential for climate change mitigation in degraded forests: a study from La primavera, México. Forests 4: 1032-1054. DOI:

Barsimantov J, Kendall J. 2012. Community Forestry, Common Property, and Deforestation in Eight Mexican States. Journal of Environment and Development 21: 414-437. DOI:

Bautista-Bello AP, López-Acosta JC, Castillo-Campos G, Gómez-Diaz JA, Krömer T. 2019. Patrones de diversidad y distribución de arbustos en el centro de Veracruz, México. Acta Botánica Mexicana 126: e1369. DOI:

Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 1444-1449. DOI:

Bonilla-Moheno M, Redo DJ, Aide TM, Clark ML, Grau HR. 2013. Vegetation change and land tenure in Mexico: A country-wide analysis. Land Use Policy 30: 355-364. DOI:

Bruijnzeel LA, Veneklaas EJ. 1998. Climatic conditions and tropical montane forest productivity: The fog has not lifted yet. Ecology 79: 3-9. DOI:[0003:CCATMF]2.0.CO;2

Burnham K, Anderson D. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York: Springer-Verlag. ISBN: 978-0-387-22456-5

Cannel MGR, Malcolm DC, Robertson PA. 1992. The ecology of mixed-species stands of trees. 1st ed. Oxford: British Ecological Society Annual Symposium. Wiley-Blackwell. DOI:; ISBN 0-632-03148-4

Carvajal-Hernández CI, Gómez-Díaz JA, Bautista-Bello AP, Krömer T. 2020. From the sea to the mountains. In: Goldstein MI, DellaSala DA, eds. Encyclopedia of the World's Biomes. Amsterdam: Elsevier, pp. 79-87. DOI:

Carvajal-Hernández CI, Krömer T. 2015. Riqueza y distribución de helechos y licófitos en el gradiente altitudinal del Cofre de Perote, centro de Veracruz, México. Botanical Sciences 93: 601-614. DOI:

Carvajal-Hernández CI, Krömer T, López-Acosta JC, Gómez-Díaz JA, Kessler M. 2017. Conservation value of disturbed and secondary forests for ferns and lycophytes along an elevational gradient in Mexico. Applied Vegetation Science 20: 662-672. DOI:

Castillo-Campos G, Halffter G, Moreno C.E. 2008. Primary and secondary vegetation patches as contributors to floristic diversity in a tropical deciduous forest landscape. Biodiversity and Conservation 17: 1701-1714. DOI:

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG. Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351-366. DOI:

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20: 3177-3190. DOI:

Chazdon RL, Broadbent EN, Rozendaal DMAA, Bongers F, Zambrano AMA, Aide TM, Balvanera P, Becknell JM, Boukili V, Brancalion PHSS, Craven D, Almeida-Cortez JS, Cabral GALL, de Jong B, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Duran SM, Espirito-Santo MM, Fandino MC, Cesar RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Lohbeck M, Martinez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Munoz R, Muscarella R, Nunes YRFF, Ochoa-Gaona S, Orihuela-Belmonte E, Pena-Claros M, Perez-Garcia EA, Piotto D, Powers JS, Rodriguez-Velazquez J, Romero-Perez IE, Ruiz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Uriarte M, van Breugel M, van der Wal H, Veloso MDMM, Vester H, Vieira ICG, Bentos TV, Williamson GB, Poorter L. 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances 2: e1501639. DOI:

Chazdon RRL, Peres CA, Dent D, Sheil D, Lugo AE, Lamb D, Stork NE, Miller SE. 2009. The potential for species conservation in tropical secondary forests. Conservation Biology 23: 1406-1417. DOI:

Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA. 2001. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications 11: 371-384. DOI:[0371:NPPITF]2.0.CO;2

Cortina-Villar S, Plascencia-Vargas H, Vaca R, Schroth G, Zepeda Y, Soto-Pinto L, Nahed-Toral J. 2012. Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environmental Management 49: 649-62. DOI:

Culmsee H, Leuschner C, Moser G, Pitopang R. 2010. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography 37: 960-974. DOI:

de Jong BHJ, Tipper R, Montoya-Gómez G. 2000. An economic analysis of the potential for carbon sequestration by forests: Evidence from southern Mexico. Ecological Economics 33: 313-327. DOI:

Delignette-Muller ML, Dutang C. 2015. fitdistrplus: an R package for fitting distributions. Journal of Statistical Software 64: 1-34. DOI:

Dossa GGO, Paudel E, Fujinuma J, Yu H, Chutipong W, Zhang Y, Paz S, Harrison RD. 2013. Factors determining forest diversity and biomass on a tropical volcano, Mt. Rinjani, Lombok, Indonesia. Plos One 8: e67720. DOI:

Enright NJ. 1982. Does Araucaria hunsteinii compete with its neighbours? Austral Ecology 7: 97-99. DOI:

Enright NJ, Ogden J. 1995. The southern conifers-a synthesis. In: Hill RS, Enright N, eds. Ecology of the Southern Conifers. Australia, Melbourne: Melbourne University Press, pp. 271-287. ISBN: 978-0522845662

Ensslin A, Rutten G, Pommer U, Zimmermann R, Hemp A, Fischer M. 2015. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6: 1-15. DOI:

Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172: 889-902. DOI:

Forrester JA, McGee GG, Mitchell MJ. 2003. Effects of Beech Bark Disease on Aboveground Biomass and Species Composition in a Mature Northern Hardwood Forest, 1985 to 2000. Journal of the Torrey Botanical Society 130: 70. DOI:

Gao J, Zhang Y. 2006. Distributional patterns of species diversity of main plant communities along altitudinal gradient in secondary forest region, Guandi Mountain, China. Journal of Forestry Research 17: 111-115. DOI:

García-Oliva F, Covaleda S, Gallardo J.F, Prat C, Velázquez-Durán R, Etchevers JD. 2014. Firewood extraction affects carbon pools and nutrients in remnant fragments of temperate forests at the Mexican Transvolcanic Belt. Bosque (Valdivia) 35: 311-324. DOI:

Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478: 378-381. DOI:

Girardin CAJJ, Malhi Y, Aragão LEOCOC, Mamani M, Huaraca Huasco W, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology 16: 3176-3192. DOI:

Givnish TJ. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87: 193-210. DOI:

Gómez-Díaz JA, Brast K, Degener J, Krömer T, Ellis E, Heitkamp F, Gerold G. 2018. Long-term changes in forest cover in Central Veracruz, Mexico (1993-2014). Tropical Conservation Science 11: 194008291877108. DOI:

Gómez-Díaz JA, Krömer T, Kreft H, Gerold G, Carvajal-Hernández CI, Heitkamp F. 2017. Diversity and composition of herbaceous angiosperms along gradients of elevation and forest-use intensity. Plos One 12: e0182893. DOI:

González-Zárate M. 2008. Estimación de la biomasa aérea y la captura de carbono en regeneración natural de Pinus masiminoi H. E. Moore, Pinus oocarpa var. ochoterenai Mtz, y Quercus sp. en el norte del estado de Chiapas, México. MSc. Thesis. Centro Agronómico Tropical de Investigación y Enseñanza.

Grabowski J, Gilman E. 2002. Measurement and prediction of tree growth reduction from tree planting. Journal of Arboriculture 30: 154-164.

Grubb PJ. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83-107. DOI:

Guariguata MR, Chazdon RL, Denslow JS, Dupuy JM, Anderson L. 1997. Structure and floristics of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecology 132: 107-120. DOI:

Guariguata M, Ostertag R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148: 185-206. DOI:

Huasco WH, Girardin CAJ, Doughty CE, Metcalfe DB, Baca LD Silva-Espejo JE, Cabrera DG, Aragão LEOC, Davila AR, Marthews TR, Huaraca-Quispe LP, Alzamora-Taype I, Mora LE, Farfán-Rios W, Cabrera KG, Halladay K, Salinas-Revilla N, Silman MR, Meir P, Malhi Y. 2014. Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology & Diversity 7: 125-142. DOI:

Hughes RF, Kauffman JB, Jaramillo VJ. 1999. Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80: 1892. DOI:

Hughes RF, Kauffman JB, Jaramillo VJ. 2010. Ecosystem?scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecological Applications 10: 515-527. DOI:[0515:ESIODA]2.0.CO;2

IPCC [Intergovernmental Panel on Climate Change]. 2019. Climate Change and Land. Switzerland, Geneva: Intergovernmental Panel on Climate Change. (accessed January 4, 2021).

Johnson DW. 1992. Effects on forest management on soil carbon storage. In: Wisniewski J, Lugo AE, eds. Natural Sinks of CO2. Puerto Rico, Palmas del mar: Springer Science and Business Media, BV, pp. 83-112. ISBN: 978-94-011-2793-6

Kelty MJ, Larson BC, Oliver CD. 1992. The ecology and silviculture of mixed-species forests. Netherlands, Dordrecht: Springer Science & Business Media. ISBN: 9780792316435

Kitayama K, Aiba S-I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90: 37-51. DOI:

Lauer W. 1973. Zusammenhänge zwischen Klima und Vegetation am Ostabfall der mexikanischen Meseta. Erdkunde 27: 192-213. DOI:

Leigh EG. 1975. Structure and climate in tropical rain forest. Annual Review of Ecology and Systematics 6: 67-86. DOI:

Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8: 219-230. DOI:

Lieberman D, Lieberman M, Peralta R, Hartshorn GS. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. The Journal of Ecology 84: 137-152. DOI:

Lovett JC, Marshall AR, Carr J. 2006. Changes in tropical forest vegetation along an altitudinal gradient in the Udzungwa Mountains National Park, Tanzania. African Journal of Ecology 44: 478-490. DOI:

Lusk CH. 2002. Basal area in a New Zealand podocarp?broadleaved forest: Are coniferous and angiosperm components independent? New Zealand Journal of Botany 40: 143-147. DOI:

MacDicken KG, Wolf GV, Briscoe CB. 1991. Standard Research Methods for Multipurpose Trees and Shrubs. USA, Arlington: Winrock International. ISBN: 09-335-95549

Maia-Araújo T, Higuchi N, Andrade de Carvalho Júnior J. 1999. Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Pará, Brazil. Forest Ecology and Management 117: 43-52. DOI:

Mani S, Parthasarathy N. 2009. Tree population and above-ground biomass changes in two disturbed tropical dry evergreen forests of peninsular India. Tropical Ecology 50: 249-258.

Marin-Spiotta E, Silver W, Ostertag R. 2007. Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecological Applications 17: 828-839. DOI:

Marshall AR, Willcock S, Platts PJ, Lovett JC, Balmford A, Burgess ND, Latham JE, Munishi PKT, Salter R, Shirima DD, Lewis SL. 2012. Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation 154: 20-33. DOI:

Martínez-Yrizar A, Sarukhan J, Perez-Jimenez A, Rincon E, Maass JM, Solis-Magallanes A, Cervantes L. 2009. Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, México. Journal of Tropical Ecology 8: 87-96. DOI:

Mendoza-Ponce A, Galicia L. 2010. Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry 83: 497-506. DOI:

Mensah S, Glèlè Kakaï R, Seifert T. 2016. Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits. Annals of Forest Research 59: DOI:

Midgley JJ, Parker R, Laurie H, Seydack A. 2002. Competition among canopy trees in indigenous forests: An analysis of the “additive basal area” phenomenon. Austral Ecology 27: 269-272. DOI:

Montgomery RA, Chazdon RL. 2001. Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82: 2707-2718. DOI:[2707:FSCAAL]2.0.CO;2

Moser G, Hertel D, Leuschner C. 2007. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10: 924-935. DOI:

Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S. 2011. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology 17: 2211-2226. DOI:

Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R, eds. Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies (Analysis and Synthesis). Germany: Heidelberg: Springer-Verlag Berlin Heidelberg, pp. 229-242. DOI:

Muñiz-Castro MA, Williams-Linera G, Benítez-Malvido J. 2015. Restoring montane cloud forest: establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restoration Ecology 23: 26-33. DOI:

Negendank JFW, Emmerman R, Krawczyk R, Mooser F, Tobschall H, Werle D. 1985. Geological and geochemical investigations on the eastern Trans Mexican volcanic belt. Geofísica Internacional 24: 477-575.

Nogueira Júnior LR, Engel VL, Parrotta JA, Melo ACG de, Ré DS. 2014. Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands. Biota Neotropica 14: e20130084. DOI:

Ogden J. 1985. An introduction to plant demography with special reference to New Zealand trees. New Zealand Journal of Botany 23: 751-772. DOI:

Ordóñez-Díaz JAB, de Jong BHJ, García-Oliva F, Aviña FL, Pérez JV, Guerrero G, Martínez R, Masera O. 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacán, Mexico. Forest Ecology and Management 255: 2074-2084. DOI:

Ordóñez-Díaz JAB, Galicia-Naranjo A, Venegas-Mancera NJ, Hernández-Tejeda T, Ordóñez-Díaz M de J, Dávalos-Sotelo R. 2015. Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y Bosques 21: 77-126. DOI:

Pan Y, Birdsey RA, Phillips OL, Jackson RB. 2013. The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics 44: 593-622. DOI:

Petrokofsky G, Kanamaru H, Achard F, Goetz SJ, Joosten H, Holmgren P, Lehtonen A, Menton MC, Pullin AS, Wattenbach M. 2012. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environmental Evidence 1: 1-21. DOI:

Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, Broadbent EN, Chazdon RL, Craven D, de Almeida-Cortez JS, Cabral GAL, de Jong BHJ, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Espírito-Santo MM, Fandino MC, César RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Licona JC, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Munõz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, de Oliveira AA, Orihuela-Belmonte E, Penã-Claros M, Pérez-Garciá EA, Piotto D, Powers JS, Rodríguez-Velázquez J, Romero-Pérez IE, Ruíz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Toledo M, Uriarte M, van Breugel M, van der Wal H, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Bentos TV, Williamson GB, Rozendaal DMA. 2016. Biomass resilience of Neotropical secondary forests. Nature 530: 211-214. DOI:

Post WM, Peng TH, Emanuel WR, King AW, Dale VH, DeAngelis DL. 1990. The global carbon cycle. American Scientist 78: 310-326. DOI: Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed January 19, 2019).

Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM. 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87: 76-87. DOI:

Raich JW, Russell AE, Vitousek PM. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai’i. Ecology 78: 707-721. DOI:[0707:PPAEDA]2.0.CO;2

Rosenfield MF, Souza AF. 2014. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees. Revista de Biología Tropical 62: 359-72.

Rozendaal DMA, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N, Balvanera P, Becknell JM, Bentos T, Brancalion PHS, Cabral GAL, Calvo-Rodriguez S, Chave J, César RG, Chazdon RL, Condit R, Dallinga JS, de Almeida-Cortez JS, de Jong B, de Oliveira A, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Dutrieux LP, Espírito-Santo MM, Fandino MC, Fernandes GW, Finegan B, García H, Gonzalez N, Moser VG, Hall JS, Hernández-Stefanoni JL, Hubbell S, Jakovac CC, Hernández AJ, Junqueira AB, Kennard D, Larpin D, Letcher SG, Licona J-C, Lebrija-Trejos E ,Marín-Spiotta E, Martínez-Ramos M, Massoca PES, Meave JA, Mesquita RCG, Mora F, Müller SC, Muñoz R, de Oliveira Neto SN, Norden N, Nunes YRF, Ochoa-Gaona S, Ortiz-Malavassi E, Ostertag R, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Aguilar-Cano J, Rodriguez-Buritica S, Rodríguez-Velázquez J, Romero-Romero MA, Ruíz J, Sanchez-Azofeifa A, de Almeida AS, Silver WL, Schwartz NB, Thomas WW, Toledo M, Uriarte M, de Sá Sampaio EV, van Breugel M, van der Wal H, Martins SV, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Villa P, Williamson GB, Zanini KJ, Zimmerman J, Poorter L. 2019. Biodiversity recovery of Neotropical secondary forests. Science Advances 5: eaau3114. DOI:

Santiago LS, Goldstein G, Meinzer FC, Fownes JH, Mueller-Dombois D. 2000. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiology 20: 673-681. DOI:

Sarmiento G, Pinillos M, Garay I, Ciencias F. de Alegre P. 2005. Biomass variability in tropical American lowland rainforests. Ecotropicos 18: 1-20.

Scaranello MA da S, Alves LF, Vieira SA, Camargo PB, de Joly CA, Martinelli LA. 2012. Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil. Scientia Agricola 69: 26-37. DOI:

Slik JWFF, Aiba S-II, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G, Poulsen AD, Raes N, Sheil D, Sidiyasa K, Suzuki E, van Valkenburg JLCHCH. 2010. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography 19: 50-60. DOI:

SMN [Servicio Meteorológico Nacional] 2018. Normales climatológicas. Servicio Meteorológico Nacional. (accessed July 3, 2018).

Soto-Esparza M, Giddings BL. 2011. Clima. In: CONABIO, ed. La Biodiversidad en Veracruz: Estudio de Estado. Mexico, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, AC, pp. 35-52. ISBN: 9786077607496

Strassburg BBN, Kelly A, Balmford A, Davies RG, Gibbs HK, Lovett A, Miles L, Orme CDL, Price J, Turner RK, Rodrigues ASL. 2010. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conservation Letters 3: 98-105. DOI:

Suwa R, Sakai T, Santos J, dos Silva RP, da Kajimoto T, Ishizuka M, Higuchi N. 2013. Significance of topographic gradient in stem diameter - height allometry for precise biomass estimation of a tropical moist forest in the Central Amazon. Japan Agricultural Research Quarterly: JARQ 47: 109-114. DOI:

Takyu M, Kubota Y, Aiba SI, Seino T, Nishimura T. 2005. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecological Research 20: 287-296. DOI:

Tanner EVJ. 1980. Studies on the biomass and productivity in a series of montane rain forests in Jamaica. The Journal of Ecology 68: 573-588. DOI:

Tanner EVJ, Vitousek PM, Cuevas E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79: 10-22. DOI:[0010:EIONLO]2.0.CO;2

Unger M, Homeier J, Leuschner C. 2012. Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170: 263-274. DOI:

Velázquez A, Mas JF, Díaz-Gallegos JR, Mayorga-Saucedo R, Alcántara PC, Castro R, Fernández T, Bocco G, Ezcurra E, Palacio JL. 2002. Patrones y tasas de cambio de uso del suelo en México. Gaceta Ecológica 62: 21-37.

Waide RB, Zimmerman JK, Scatena FN. 1998. Controls of primary productivity: Lessons from the Luquillo mountains in Puerto Rico. Ecology 79: 31-37. DOI:[0031:COPPLF]2.0.CO;2

Williams-Linera G. 1983. Biomass and nutrient content in two successional stages of tropical wet forest in Uxpanapa, Mexico. Biotropica 15: 275-284. DOI:

Williams-Linera G, Guillén-Servent A, Gómez-García Orlik, Lorea-Hernández Francisco, Gómez-García O, Lorea-Hernández F. 2007. Conservación en el centro de Veracruz, México. El bosque de niebla: ¿reserva archipiélago o corredor biológico? In: Halffter G, Guevara S, Melic A, eds. Hacia una Cultura de Conservación de la Diversidad Biológica. Spain, Zaragoza: Sociedad Entomológica Aragonesa, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Comisión Nacional de Áreas Naturales Protegidas, Consejo Nacional de Ciencia y Tecnología, Instituto de Ecología, A. C., Organización de las Naciones Unidas, pp. 303-310. ISBN: 978-84-935872-0-8

Woodward FI, Williams BG. 1987. Climate and plant distribution at global and local scales. Vegetatio 69: 189-197. DOI:

Wright SJ. 2005. Tropical forests in a changing environment. Trends in Ecology and Evolution 20: 553-560. DOI:

How to Cite
Alrutz, M., Gómez Díaz, J. A., Schneidewind, U., Krömer, T., & Kreft, H. (2021). Forest structural parameters and aboveground biomass in old-growth and secondary forests along an elevational gradient in Mexico. Botanical Sciences, 100(1), 67-85.