Differentiation in seed mass and seedling biomass allocation in Prosopis laevigata throughout its distribution range in Mexico is associated to water availability

keywords: actual evapotranspiration, arid zones, functional traits, germination


Background: Seedling establishment depends on the quality of the seeds and environmental conditions. Differential biomass allocation in emergent seedlings probably constitutes a relevant adaptive response of populations along environmental gradients.

Questions: Are there differences in seed mass and biomass allocation in seedlings among Prosopis laevigatapopulations? Is this variation correlated with environmental variables?

Studied species: Prosopis laevigata (Humb. & Bonpl. ex Willd.) M.C.Johnst (Fabaceae).

Study site and dates: Thirteen localities along the distribution of P. laevigata in México. From 2016 to 2020.

Methods: Seeds were collected from four or five mother trees per locality. Seed mass (SM) was obtained in ten seeds per mother and six functional traits indicative of biomass allocation were measured in the seedlings after 10 days of germination. Population mean values were obtained for the six traits plus SM and subjected to a principal component analysis (PCA). Population scores on the first two axis of the PCA were regressed against environmental variables from the collection localities using a stepwise regression model.

Results: Populations displayed functional variation congruent with alternative biomass allocation strategies. The conservative strategy was characterized by larger seeds and seedlings with denser tissues and a higher investment in root biomass, while the opposite characterized the acquisitive strategy. Actual evapotranspiration in May, isothermality and soil water content in February were environmental variables that significantly predicted population scores on the first two axes of the PCA.

Conclusion: Water availability gradients influence seed mass and seedling biomass allocation variation among P. laevigata populations.


Download data is not yet available.

Author Biographies

Fátima Hernández-Madrigal, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia

Postoctoral Researcher

Gonzalo Contreras-Negrete, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia

Doctoral Student

Rafael Aguilar-Romero, Escuela Nacional de Estudios superiores, Unidad Morelia, Universidad Nacional Autónoma de México

Técnico Académico

Differentiation in seed mass and seedling biomass allocation in Prosopis laevigata throughout its distribution range in Mexico is associated to water availability


Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ. 2000. The Evolution of Plant Ecophysiological Traits: Recent Advances and Future Directions: New research addresses natural selection, genetic constraints, and the adaptive evolution of plant ecophysiological traits. BioScience 50 :979-995. DOI: https://doi.org/10.1641/0006-3568(2000)050[0979:teopet]2.0.co;2

Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M. 2014. Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences 111: 740-745. DOI: https://doi.org/10.1073/pnas.1315179111

Akaike H. 1974. A new look at the statistical model identification. IEEE 19 :716-723. DOI: https://doi.org/10.1109/TAC.1974.1100705

Ansley RJ, Boutton TW, Jacoby PW. 2007. Mesquite root distribution and water use efficiency in response to long-term soil moisture manipulations. In: Sosebee RE, Wester DB, Britton CM, McArthur ED, Kitchen SG, eds. Proceedings: Shrubland dynamics - fire and water. Proccedings RMRS-P-47. Fort Collins, CO: Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp. 96-103.

Barak RS, Lichtenberger TM, Wellman-Houde A, Kramer AT, Larkin DJ. 2018. Cracking the case: Seed traits and phylogeny predict time to germination in prairie restoration species. Ecology and Evolution 8: 5551-5562. DOI: https://doi.org/10.1002/ece3.4083

Buendía-González L, Estrada-Zúñiga ME, Orozco-Villafuerte J, Cruz-Sosa F, Vernon-Carter EJ. 2012. Somatic embryogenesis of the heavy metal accumulator Prosopis laevigata. Plant Cell Tissue and Organ Culture 108: 287-296. DOI: https://doi.org/10.1007/s11240-011-0042-4

Calderón G, Rzedowski J. 2001. Flora fanerogámica del Valle de México. México: Instituto de Ecología AC. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 978-607-7607-36-6.

Campos CM, Ojeda RA. 1997. Dispersal and germination of Prosopis flexuosa (Fabaceae) seeds by desert mammals in Argentina. Journal of arid Environments 35: 707-714. DOI: https://doi.org/10.1006/jare.1996.0196

Contreras-Negrete G, Letelier L, Piña-Torres J, González-Rodríguez A. 2021a. Genetic structure, phylogeography and potential distribution modeling suggest a population expansion in the mesquite Prosopis laevigata since the last interglacial. Plant Systematics and Evolution 307: 22. DOI: https://doi.org/10.1007/s00606-021-01744-5

Contreras-Negrete G, Pineda-García F, Nicasio-Arzeta S, De la Barrera E, González-Rodríguez A. 2021b. Differences in germination response to temperature, salinity, and water potential among Prosopis laevigata populations are guided by the tolerance-exploitation trade-off. Flora 285: 151963. DOI: https://doi.org/10.1016/j.flora.2021.151963

Cony MA, Trione S. 1996. Germination with respect to temperature of two Argentinian Prosopis species. Journal of Arid Environments 33: 225-236.

Cony MA, Trione SO. 1998. Inter and intraspecific variability in Prosopis flexuosa and P. chilensis: seed germination under salt and moisture stress. Journal of Arid Environments 40: 307-317. DOI: https://doi.org/10.1006/jare.1998.0448

Costa-Saura JM, Martínez-Vilalta J, Trabucco A, Spano D, Mereu S. 2016. Specific leaf area and hydraulic traits explain niche segregation along an aridity gradient in Mediterranean woody species. Perspectives in Plant Ecology, Evolution and Systematics 21: 23-30. DOI: https://doi.org/10.1016/j.ppees.2016.05.001

Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E. 2014. An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology 34: 2427-2437. DOI: https://doi.org/10.1002/joc.3848

De Noir F, Juárez M, Boletta P, Avila S. 2002. Ripeness and seed dispersal in a semiarid region of Argentina and their relation with some climatic factors. Foresta Veracruzana 4: 7-13

de Villalobos AE, Peláez DV. 2015. Functional responses of woody Prosopis caldenia seedlings to drought and livestock grazing in semiarid rangelands of Argentina. Arid Land Research and Management 29: 487-502. DOI: https://doi.org/10.1080/15324982.2015.1030798

Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. 2010. Germination, Postgermination Adaptation, and Species Ecological Ranges. Annual Review of Ecology, Evolution, and Systematics 41: 293-319. DOI: https://doi.org/10.1146/annurev-ecolsys-102209-144715

ESRI [Environmental Systems Research Institute] 1999. Arcview GIS 3.3. Environmental Systems Research Institute, Redlands.

Fagg CW, Stewart JL. 1994. The value of Acacia and Prosopis in arid and semi-arid environments. Journal of Arid Environments 27: 3-25. DOI: https://doi.org/10.1006/jare.1994.1041

Fajardo A, Piper FI. 2011. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist 189: 259-271. DOI: https://doi.org/10.1111/j.1469-8137.2010.03468.x

Fenner M, Thompson K. 2005. The Ecology of Seeds. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511614101

Flores J, Jurado E. 1998. Germination and early growth traits of 14 plant species native to northern Mexico. The Southwestern Naturalist 43: 40-46.

Flores J, Pérez-Sánchez RM, Jurado E. 2017. The combined effect of water stress and temperature on seed germination of Chihuahuan Desert species. Journal of Arid Environments 146: 95-98. DOI: https://doi.org/10.1016/j.jaridenv.2017.07.009

Flores Tena FJ. 1993. Atributos ecológicos y aprovechamiento del mezquite. Investigación y Ciencia: de la Universidad Autónoma de Aguascalientes 9: 24-30.

Galindo Almanza S, García Moya E, Wendt TL, González Cossio FV. 1992. Potencial de hibridación natural en el mesquite (Prosopis laevigata y P. glandulosa var. Torreyana, Leguminosae) de la altiplanicie de San Luis Potosi. Acta Botánica Mexicana 20. DOI: https://doi.org/10.21829/abm20.1992.660

Gardarin A, Coste F, Wagner M-H, Dürr C. 2016. How do seed and seedling traits influence germination and emergence parameters in crop species? A comparative analysis. Seed Science Research 26: 317-331. DOI: https://doi.org/10.1017/S0960258516000210

Gogosz AM, Torres Boeger MR. 2019. Functional morphology of subtropical tree seedlings in southern Brazil. Rodriguésia 70: DOI: https://doi.org/10.1590/2175-7860201970010

Guevara A, Giordano CV, Aranibar J, Quiroga M, Villagra PE. 2010. Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina). Plant and Soil 330: 447-464. DOI: https://doi.org/10.1007/s11104-009-0218-4

Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457-461. DOI: https://doi.org/10.1007/s004420100628

Jacobsen A, Agenbag L, Esler K, Pratt RB, Ewers F, Davis S. 2007. Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. Journal of Ecology 95: 171-183. DOI: https://doi.org/10.1111/j.1365-2745.2006.01186.x

Jung V, Violle C, Mondy C, Hoffmann L, Muller S. 2010. Intraspecific variability and trait-based community assembly. Journal of Ecology 98: 1134-1140. DOI: https://doi.org/10.1111/j.1365-2745.2010.01687.x

Lambers H, Poorter H. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187-261. DOI: https://doi.org/10.1016/S0065-2504(08)60148-8

Larson JE, Sheley RL, Hardegree SP, Doescher PS, James JJ. 2015. Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses. Journal of Applied Ecology 52: 199-209. DOI: https://doi.org/10.1111/1365-2664.12350

Laughlin DC, Strahan RT, Adler PB, Moore MM. 2018. Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecology Letters 21: 411-421. DOI: https://doi.org/10.1111/ele.12914

Llanderal-Mendoza J, Gugger FP, Oyama K, Uribe-Salas D, González-Rodríguez A. 2017. Climatic determinants of acorn size and germination percentage of Quercus rugosa (Fagaceae) along a latitudinal gradient in Mexico. Botanical Sciences 95: 37-45. DOI: https://doi.org/10.17129/botsci.640

Lloret F, Casanovas C, Peñuelas J. 1999. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Functional Ecology 13: 210-216. DOI: https://doi.org/10.1046/j.1365-2435.1999.00309.x

Majd R, Aghaie P, Kazerooni Monfared E, Alebrahim M. 2013. Evaluating of Some Treatments on Breaking seed Dormancy in Mesquite. International Journal of Agronomy and Plant Production 4: 1433-1439.

Markesteijn L, Poorter L. 2009. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology 97: 311-325. DOI: https://doi.org/10.1111/j.1365-2745.2008.01466.x

Méndez-Alonzo R, Paz H, Zuluaga RC, Rosell JA, Olson ME. 2012. Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology 93: 2397-2406. DOI: https://doi.org/10.1890/11-1213.1

Miranda R, Oliveira M, Correia R, Almeida-Cortez J, Pompelli M. 2011. Germination of Prosopis juliflora (Sw) DC seeds after scarification treatments. Plant Species Biology 26: 186-192. DOI: https://doi.org/10.1111/j.1442-1984.2011.00324.x

Moles A, Westoby M. 2004. Seedling survival and seed size: a synthesis of the literature. . Journal of Ecology 92: 372-383. DOI: https://doi.org/10.1111/j.0022-0477.2004.00884.x

Moles AT, Perkins SE, Laffan SW, Flores-Moreno H, Awasthy M, Tindall ML, Sack L, Pitman A, Kattge J, Aarssen LW, Anand M, Bahn M, Blonder B, Cavender-Bares J, Cornelissen JHC, Cornwell WK, Díaz S, Dickie JB, Freschet GT, Griffiths JG, Gutierrez AG, Hemmings FA, Hickler T, Hitchcock TD, Keighery M, Kleyer M, Kurokawa H, Leishman MR, Liu K, Niinemets Ü, Onipchenko V, Onoda Y, Penuelas J, Pillar VD, Reich PB, Shiodera S, Siefert A, Sosinski Jr EE, Soudzilovskaia NA, Swaine EK, Swenson NG, van Bodegom PM, Warman L, Weiher E, Wright IJ, Zhang H, Zobel M, Bonser SP. 2014. Which is a better predictor of plant traits: temperature or precipitation? Journal of Vegetation Science 25: 1167-1180. DOI: https://doi.org/10.1111/jvs.12190

Murray BR, Brown AHD, Dickman CR, Crowther MS. 2004. Geographical gradients in seed mass in relation to climate. Journal of Biogeography 31: 379-388. DOI: https://doi.org/10.1046/j.0305-0270.2003.00993.x

Nadeem M, Mollier A, Morel C, Shahid M, Aslam M, Zia-ur-Rehman M, Wahid MA, Pellerin S. 2013. Maize seedling phosphorus nutrition: Allocation of remobilized seed phosphorus reserves and external phosphorus uptake to seedling roots and shoots during early growth stages. Plant and Soil 371: 327-338.

Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 1560-1563. DOI: hppts://doi.org/ 10.1126/science.1082750

Niinemets Ü. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82: 453-469. DOI: https://doi.org/10.2307/2679872

Ortega-Baes P, de Viana M, Sühring S. 2002. Germination in Prosopis ferox seeds: Effects of mechanical, chemical and biological scarificators. Journal of Arid Environments 50: 185-189. DOI: https://doi.org/10.1006/jare.2001.0859

Palacios R. 2006. Los Mezquites Mexicanos: Biodiversidad y Distribución Geográfica. Boletín de la Sociedad Argentina de Botánica 41: 99-121.

Palacios RA, Hernández FM, Jiménez ME, Tirado TD. 2016. Potential distribution of Prosopis laevigata (Humb. etBonpl. ex Willd) M. C. Johnston based on an ecological niche model. Revista Mexicana de Ciencias forestales 7: 35-46.

Pasiecznik NM, Felker P, Harris PJC, Harsh LN, Cruz G, Tewari JC, Cadoret K, Maldonado LJ. 2001. The Prosopis juliflora-Prosopis pallida complex: A monograph. UK, Coventry: HDRA. ISBN: 0-905343301.

Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine J, Gurvich D, Urcelay C, Veneklaas E, Reich P, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. DOI: https://doi.org/10.1071/BT12225

Pérez-Sánchez RM, Jurado E, Chapa-Vargas L, Flores J. 2011. Seed germination of Southern Chihuahuan Desert plants in response to elevated temperatures. Journal of Arid Environments 75: 978-980. DOI: https://doi.org/10.1016/j.jaridenv.2011.04.020

Petit C, Thompson JD. 1998. Phenotypic selection and population differentiation in relation to habitat heterogeneity in Arrhenatherum elatius (Poaceae). Journal of Ecology 86: 829-840. DOI: https://doi.org/10.1046/j.1365-2745.1998.8650829.x

Pineda-García F, Paz H, Meinzer FC, Angeles G. 2016. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiology 36: 208-217. DOI: https://doi.org/10.1093/treephys/tpv124

Pineda-García F, Paz H, Tinoco-Ojanguren C. 2011. Morphological and physiological differentiation of seedlings between dry and wet habitats in a tropical dry forest. Plant, cell & environment 34: 1536-1547. DOI: https://doi.org/10.1111/j.1365-3040.2011.02351.x

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30-50. DOI: https://doi.org/10.1111/j.1469-8137.2011.03952.x

Ramírez-Arriaga E, Prámparo MB, Martínez-Hernández E. 2006. Palynology of the Paleogene Cuayuca Formation (Stratotype Sections), Southern Mexico: chronostratigraphical and palaeoecological implications. Review of Palaeobotany and Palynology 141: 259-275.

Reich PB. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102: 275-301. DOI: https://doi.org/10.1111/1365-2745.12211

Reich P, Ellsworth D, Walters M, Vose J, Gresham C, Volin J, Bowman W. 1999. Generality of leaf trait relationships: A test across six biomes. Ecology 80: 1955-1969. DOI: https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C. 1998. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology 12: 395-405. DOI: https://doi.org/10.1046/j.1365-2435.1998.00209.x

Reich P, Wright I, Cavender-Bares J, Craine J, Oleksyn J, Westoby M, Walters M. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164: S143-S164. DOI: https://doi.org/10.1086/374368

Rzedowski J. 1988. Análisis de la distribución geográfica del complejo Prosopis (Leguminosae, Mimosoideae) en Norteamérica. Acta Botanica Mexicana 3: 7-19. DOI: https://doi.org/10.21829/abm3.1988.566

Salazar PC, Navarro-Cerrillo R, Cruz G, Grados N, Villar R. 2019. Variability in growth and biomass allocation and the phenotypic plasticity of seven Prosopis pallida populations in response to water availability. Trees 33: 1409-1422. DOI: https://doi.org/10.1007/s00468-019-01868-9

Salazar PC, Navarro-Cerrillo R, Cruz G, Villar R. 2018. Intraspecific leaf functional trait variability of eight Prosopis pallida tree populations along a climatic gradient of the dry forests of northern Peru. Journal of Arid Environments 152: 12-20. DOI: https://doi.org/10.1016/j.jaridenv.2018.01.010

Suding K, Lavorel S, Chapin Iii FS, Cornelissen J, Diaz S, Garnier E, Goldberg D, Hooper D, Jackson S, Navas M-L. 2008. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Change Biology 14: 1125-1140. DOI: https://doi.org/10.1111/j.1365-2486.2008.01557.x

Tilman D. 1985. The Resource-Ratio Hypothesis of Plant Succession. The American Naturalist 125: 827-852.

Trabucco A, Zomer RJ. 2010. Global Soil Water Balance Geospatial Database. Available from CGIAR Consortium for Spatial Information. https://cgiarcsi.community (accesed July 15, 2020).

Vilela A, Ravetta D. 2001. The effect of seed scarification and soil-media on germination, growth, storage, and survival of seedlings of five species of Prosopis L. (Mimosaceae). Journal of Arid Environments 48: 171-184. DOI: https://doi.org/10.1006/jare.2000.0735

Villagra P. 1995. Temperature effects on germination of Prosopis argentina and P. alpataco (Fabaceae, Mimosoideae). Seed Science and Technology 23: 639-646.

Westoby M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199: 213-227. DOI: https://doi.org/10.1023/A:1004327224729

Wright IJ, Westoby M. 1999. Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology 87: 85-97. DOI: https://doi.org/10.1046/j.1365-2745.1999.00330.x

How to Cite
Hernández-Madrigal, F., Contreras-Negrete, G., Aguilar-Romero, R., Pineda-García, F., & González-Rodríguez, A. (2022). Differentiation in seed mass and seedling biomass allocation in Prosopis laevigata throughout its distribution range in Mexico is associated to water availability. Botanical Sciences, 100(2), 274-290. https://doi.org/10.17129/botsci.2846