Seasonal changes in photosynthesis for the epiphytic bromeliad Tillandsia brachycaulos in a tropical dry deciduous forest

keywords: chlorophyll fluorescence, crassulaceae acid metabolism, microenvironments, photosynthetic pigments, water potentials


Background: Sunlight stress and drought affect plants by inducing various biochemical and physiological responses, which reduce growth. Seasonal changes in light and water availability that occur in forest canopies, where epiphytes occur, are extreme.

Questions: What are the seasonal changes in photosynthesis for an abundant epiphytic bromeliad in contrasting microenvironments? Is Crassulacean acid metabolism (CAM) an important feature of photoprotection for this epiphyte?

Studied species: Tillandsia brachycaulos Schltdl. (Bromeliaceae)

Study site and dates: Canopy of the tropical dry deciduous forest of Dzibilchaltún National Park, Yucatan, Mexico during the rainy season 2008 and dry season 2009.

Methods: Diurnal measurements of photosystem II efficiency, titratable acidity, leaf water potential, and photosynthetic pigment concentration were measured during the dry and rainy seasons in adult plants of T. brachycaulos in shaded and exposed microenvironments. The prevailing environmental conditions (photon flux density, precipitation, air temperature and relative humidity) were also seasonally characterized.

Results: The highest irradiance occurred during the dry season caused photo-inactivation, a decrease of the quantum efficiency of photosystem II and a reduction in CAM activity of about 40 % in leaves of exposed plants of T. brachycaulos. During the rainy season, the leaf water potential of exposed and shaded plants of T. brachycaulos was lower at midday than at predawn, indicating water loss during the day.

Conclusions: Individuals of T. brachycaulos reduced CAM activity during the dry season; and, during the rainy season, increased carbon gain by stomata opening during phase II and IV of CAM.


Download data is not yet available.
Seasonal changes in photosynthesis for the epiphytic bromeliad <em>Tillandsia brachycaulos</em> in a tropical dry deciduous forest


Adams WW, Zarter CR, Muehv KE, Amiard V, Demmig-Adams B. 2008. Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW, Mattoo AK, eds. Photoprotection, photoinhibition, gene regulation and environment. Netherlands: Springer Science Business Media BV, , pp. 49-64. ISBN: 978-1-4020-3579-1

Adams WW III, Muller O, Cohu CM, Demmig-Adams B. 2013. May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynthesis Research 117:31-44. DOI:

Adams WW, Stewart JJ, Demmig-Adams B. 2018. Photosynthetic modulation in response to plant activity and environment. In: Adams III W, Terashima I, eds. The Leaf: A platform for performing photosynthesis. Advances in photosynthesis and respiration (Including bioenergy and related processes), Vol 44. Switzerland AG: Springer International Publishing, Cham. pp. 493-566. ISBN 978-3-319-93592-8, DOI:

Andrade JL. 2003. Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. Journal of Tropical Ecology 19: 479-88. DOI:

Andrade JL, Cervera JC, Graham EA. 2009. Microenvironments, water relations, and productivity of CAM plants. In: de la Barrera E, Smith WK, eds. Perspectives in biophysical plant ecophysiology. A tribute to Park S. Nobel. Mexico, DF: Universidad Nacional Autónoma de México. pp. 95-120. ISBN: 978-0-578-00676-5

Athar HUR, Ashraf M. 2005. Photosynthesis under drought stress. In: Pessarakli M, ed. Hand Book of Photosynthesis. New York: CRC Press, Taylor and Francis Group, pp. 793-809. ISBN-13: 978-0824758394

Arroyo-Pérez E, Flores J, González-Salvatierra C, Matías-Palafox ML, Jiménez-Sierra C. 2017. High tolerance to high-light conditions for the protected species Ariocarpus kotschoubeyanus (Cactaceae). Conservation Physiology 5: DOI:

Baker NR. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology 59: 89-113. DOI:

Benzing DH. 1998. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Climatic Change 39: 519-40. DOI:

Benzing DH. 2000. Bromeliaceae: profile of an adaptive radiation. Cambridge, United Kingdom: Cambridge University Press. ISBN: 0-521-43031-3

Blankenship R. 2014. Molecular mechanisms of photosynthesis. London: Blackwell Science. ISBN: 978-1-4051-8976-7

Cach-Pérez MJ, Andrade JL, Chilpa-Galván N, Tamayo Chim M, Orellana R, Reyes-García C. 2013. Climatic and structural factors influencing epiphytic bromeliad community assemblage along a gradient of water-limited environments in the Yucatan Peninsula, Mexico. Tropical Conservation Science 6: 283-302. DOI:

Cach-Pérez MJ, Andrade JL, Cetzal-Ix W, Reyes-García C. 2016. Environmental influence on the inter-and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula. Botanical Journal of the Linnean Society 181: 441-458. DOI:

Cach-Pérez MJ, Andrade JL, Reyes-García C. 2018. Morphophysiological plasticity in epiphytic bromeliads across a precipitation gradient in the Yucatan Peninsula, Mexico. Tropical Conservation Science 11: 1940082918781926. DOI:

Cervantes SE, Graham EA, Andrade JL. 2005. Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecology 179: 107-18. DOI:

Cervera JC, Andrade JL, Graham EA, Durán R, Jackson PC, Simá JL. 2007. Photosynthesis and optimal light microhabitats for a rare cactus, Mammillaria gaumeri, in two tropical ecosystems. Biotropica 39: 620-627. DOI:

Chaves CJN, Leal BSS, Lemos-Filho JP. 2018. How are endemic and widely distributed bromeliads responding to warming temperatures? A case study in a Brazilian hotspot. Flora 238: 110-118. DOI:

Chávez-Sahagún E, Andrade JL, Zotz G, Reyes-García C. 2019. Dew can prolong photosynthesis and water status during drought in some epiphytic bromeliads from a seasonally dry tropical forest. Tropical Conservation Science 12: 1-11. DOI:

Chow WS, Lee HY, He J, Hendrickson L, Hong Y-N, Matsubara S. 2005. Photoinactivation of photosystem II in leaves. Photosynthesis Research 84: 35-41. DOI:

de la Rosa-Manzano E, Andrade JL, García-Mendoza E, Zotz G, Reyes-García C. 2015. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico. Planta 242: 1425-1438. DOI:

de la Rosa-Manzano E, Andrade JL, Zotz G, Reyes-García C. 2014. Epiphytic orchids in tropical dry forest of Yucatan, Mexico - Species occurrence abundance and correlations with host tree characteristics and environmental conditions. Flora 209: 100-109. DOI:

Demmig?Adams B, Adams WW. 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist 172: 11-21. DOI:

Evans J. 2013. Improving photosynthesis. Plant Physiology 162: 1780-1793. DOI:

Fernández-Marín B, Gulías J, Figueroa CM, Iñiguez C, Clemente-Moreno MJ, Nunes-Nesi A, Fernie AR, Cavieres LA, Bravo LA, García-Plazola JI, Gago J. 2020. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. The Plant Journal 101: 979-1000. DOI:

Givnish TJ. 1988. Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63-92. DOI:

González-Salvatierra C, Andrade JL, Escalante-Erosa F, García-Sosa K, Peña-Rodríguez LM. 2010. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest. Journal of Plant Physiology 167: 792-99. DOI:

Graham EA, Andrade JL. 2004. Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. American Journal of Botany 91: 699-706. DOI:

Griffiths H, Maxwell K. 1999. In memory of C. S. Pittendrigh: does exposure in forest canopy relate to photoprotective strategies in epiphytic bromeliads? Functional Ecology 13: 15-23. DOI:

Guevara-Escobar A, Cervantes-Jiménez M, Suzán-Azpiri H, González-Sosa E, Hernández-Sandoval L, Malda-Barrera G, Martínez-Díaz M. 2011. Fog interception by ball moss (Tillandsia recurvata). Hydrology and Earth System Sciences 15: 2509-2518. DOI:

Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14: 9643-9684. DOI:

Hendry GA, Price AH. 1993. Stress indicators: chlorophylls and carotenoids. In: Hendry GAF, Grime JP, eds. Methods in Comparative Plant Ecology. London: Chapman and Hall, pp. 148-152. ISBN: 978-94-011-1494-3

Hernández-Robinson S, Graham EA, Hernández-González O, Us-Santamaría R, Simá JL, Arellano-Martín F, Andrade JL. 2020. Hot but Not Dry: modest changes in water relations for an epiphytic bromeliad in a tropical dry deciduous forest. International Journal of Plant Sciences 181: 945-954. DOI:

Hou-Sung J, Niyogi K. 2008. Molecular analysis of photoprotection of photosynthesis. In: Demmig-Adams B, Adams W, Mattoo A. Photoprotection, Photoinhibition, Gene Regulation, and Environment. Dordrecht: Springer Netherlands, pp. 127-143 ISBN: 978-1-4020-9281-7

Keller P, Lüttge U. 2005. Photosynthetic light-use by three bromeliads originating from shaded sites (Ananas ananassoides, Ananas comosus cv. Panare) and exposed sites (Pitcairnia pruinosa) in the medium Orinoco basin, Venezuela. Biologia Plantarum 49: 73-79. DOI:

Königer M, Harris GC, Virgo A, Winter K. 1995. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants. Oecologia 104: 280-290. DOI:

Lambers H, Oliveira RS. 2019. Photosynthesis, Respiration, and Long-Distance Transport: Photosynthesis. In: Lambers H, Oliveira RS, eds. Plant Physiological Ecology. Switzerland: Springer, Cham. pp. 11-114.

Lawson T, Kramer DM, Raines CA. 2012. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Current Opinion in Biotechnology 23: 215-220. DOI:

Long SP, Humphries S, Falkowski PG. 1994. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology 45: 633-62. DOI

Males J, Griffiths H. 2017. Stomatal biology of CAM plants. Plant Physiology 174: 550-560. DOI:

Martin CE, Tüffers A, Herppich WB, von Willert DJ. 1999. Utilization and dissipation of absorbed light energy in the epiphytic crassulacean acid metabolism bromeliad Tillandsia ionantha. International Journal of Plant Sciences 160: 307-313. DOI:

Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K. 2009. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Functional Plant Biology 36: 20-36. DOI:

Maxwell C, Griffiths H, Borland AM, Broadmeadow MSJ, McDavid CR. 1992. Photoinhibitory responses of the epiphytic bromeliad Guzmania monostachia during the dry season in Trinidad maintains photochemical integrity under adverse conditions. Plant Cell and Environment 15: 37-47. DOI:

Maxwell C, Griffiths H, Young AJ. 1994. Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. Functional Ecology 8: 746-754. DOI:

Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659–668.

Mendoza B, García-Acosta V, Velasco V, Jáuregui E, Díaz-Sandoval R. 2007. Frequency and duration of historical droughts from the 16th to the 19th centuries in the Mexican Maya lands, Yucatan Peninsula. Climatic Change 83: 151-168.

Mondragón D, Durán R, Ramírez I, Valverde T. 2004. Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatán Península, Mexico. Journal of Tropical Ecology 20: 189-200. DOI:

Niewiadomska E, Borland AM. 2008. Crassulacean acid metabolism: a cause or consequence of oxidative stress in plants? In: Lüttge U, Beyschlag W, Murata J, eds. Progress in Botany 69. Berlin: Springer Germany, pp. 247-66. ISBN: 978-3-540-72954-9

Nishiyama Y, Murata N. 2014. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Applied Microbiology and Biotechnology 98: 8777-8796. DOI:

Niyogi KK. 2000. Safety valves for photosynthesis. Current Opinion in Plant Biology 3: 455-60. DOI:

Nobel PS. 2003. Environmental Biology of Agaves and Cacti. Cambridge, UK: Cambridge University Press. ISBN: 9780521543347

Nobel PS, Loik ME, Meyer RW. 1991. Microhabitat and diel tissue acidity changes for two sympatric cactus species differing in growth habitat. Journal of Ecology 79: 167-182. DOI:

Nogués S, Baker NR. 2000. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of Experimental Botany 51: 1309-1317. DOI:

Olmsted I, Gómez-Juárez M. 1996. Distribution and conservation of epiphytes in the Yucatan Peninsula. Selbyana 17: 58-70.

Orellana LR, Balam KM, Bañuelos RI, García ME, González-Iturbe AJ, Herrera CF, Vidal LJ. 1999. Evaluación climática. In: García A, Córdoba J, eds. Atlas de procesos territoriales de Yucatán. Mérida, Yucatán: Facultad de Arquitectura, Universidad Autónoma de Yucatán, pp. 163-82.

Petter G, Wagner K, Wanek W, Sánchez-Delgado EJ, Zotz G, Cabral JS, Kreft H. 2016. Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra and interspecific trait variability, and taxonomic signals. Functional Ecology 30: 188-198. DOI:

Pereira PN, Cushman JC. 2019. Exploring the relationship between crassulacean acid metabolism (CAM) and mineral nutrition with a special focus on nitrogen. International Journal of Molecular Sciences 20: 4363. DOI:

Ramírez I, Carnevali G, Chi F. 2005. Guía Ilustrada de las Bromeliaceae de la porción mexicana de la península de Yucatán. Mérida, Yucatán: Centro de Investigación Científica de Yucatán., México. ISBN: 968-6532-14-5

Rascher U, Liebig M, Lüttge U. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell and Environment 23: 1397-405. DOI:

Reyes-García C, Griffiths H. 2009. Ecophysiological studies of perennials of the Bromeliaceae family in a dry forest: strategies for survival. In: de la Barrera E, Smith WK, eds. Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel. Mexico, DF: Universidad Nacional Autónoma de México. pp. 121-151. ISBN: 978-0-578-00676-5

Reyes-García C, Mejía-Chang M, Griffiths H. 2012. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community. New Phytologist 193: 745-754. DOI:

Ricalde MF, Andrade JL, Durán R, Dupuy JM, Simá JL, Us-Santamaría R, Santiago LS. 2010. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient. Oecologia 164: 871-880. DOI:

Ritchie RJ, Bunthawin S. 2010. The use of pulse amplitude modulation (PAM) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. cv. Viravuth Pink). International Journal of Plant Sciences 171: 575-585. DOI:

Rosado?Calderón AT, Tamayo?Chim M, de la Barrera E, Ramírez?Morillo IM, Andrade JL, Briones O, Reyes?García C. 2020. High resilience to extreme climatic changes in the CAM epiphyte Tillandsia utriculata L. (Bromeliaceae). Physiologia Plantarum 168: 547-562. DOI:

Silvera K, Lasso E. 2016. Ecophysiology and crassulacean acid metabolism of tropical epiphytes. In: Goldstein G, Santiago LS, eds. Tropical Tree Physiology: Adaptations and Responses in a Changing Environment. New York: Springer, 25-43. ISBN: 978-3-319-27422-5

Skillman JB, Winter K. 1997. High photosynthetic capacity in a shade-tolerant crassulacean acid metabolism plant. Plant Physiology 113: 441-450. DOI:

Smith JAC, Griffiths H, Lüttge U. 1986. Comparative ecophysiology of CAM and C3 bromeliads. I. The ecology of the Bromeliaceae in Trinidad. Plant Cell and Environment 9: 359-376. DOI:

Stemke J, Santiago L. 2011. Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. Photosynthetica 49: 195-200. DOI:

Takahashi S, Murata N. 2008. How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13: 178-82. DOI:

Takahashi S, Badger MR. 2011. Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16: 53-60. DOI:

Thien LB, Bradburn AS, Welden AL. 1982. The woody vegetation of Dzibilchaltun. A maya archeological site in Northwest Yucatán, Mexico. Middle American Research Institute Occasional Papers 5: 1-24.

Triantaphylidès C, Havaux M. 2009. Singlet oxygen in plants: production, detoxification and signaling. Trends in Plant Science 14: 219-228. DOI:

Valdez-Hernández M, Andrade JL, Jackson PC, Rebolledo-Vieyra M. 2010. Phenology of five tree species of a tropical dry forest in Yucatán, Mexico: effects of environmental and physiological factors. Plant Soil 329: 155-171. DOI:

Vialet-Chabrand S, Matthews JS, Simkin AJ, Raines CA, Lawson T. 2017. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiology 173: 2163-2179. DOI:

van Tongerlo E, Trouwborst G, Hogewoning SW, van Ieperen W, Dieleman JA, Marcelis LFM. 2021. Crassulacean acid metabolism species differ in the contribution of C3 and C4 carboxylation to end of day CO2 fixation. Physiologia Plantarum 172: 134-145. DOI:

Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307-313. DOI:

Winter K, Smith JAC. 1996. An introduction to crassulacean acid metabolism. Biochemical principles and ecological diversity. In: Winter K, Smith JAC, eds. Crassulacean acid metabolism. Berlin: Springer Germany, pp. 1-13. ISBN: 978-3-642-79060-7

Xiong FS, Mueller EC, Day TA. 2000. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. American Journal of Botany 87: 700-710. DOI:

Yamori W, Shikanai T. 2016. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology 67: 81-106. DOI:

Zotz G. 2016. Plants on Plants - The Biology of Vascular Epiphytes. Switzerland: Springer International Publishing. 282 pp ISBN: 978-3-319-39237-0

Zotz G, Winter K. 1994. Annual carbon balance and nitrogen use efficiency in tropical C3 and CAM epiphytes. New Phytologist 126: 481-492. DOI:

Zotz G, Andrade JL. 1998. Water relations of two co-occurring epiphytic bromeliads. Journal of Plant Physiology 152: 545-554. DOI:

Zotz G, Bader MY. 2009. Epiphytic plants in a changing world-global: change effects on vascular and nonvascular epiphytes. In: Lüttge U, Beyschlag W, Büdel B, Francis D, eds. Progress in Botany 70. Berlin: Springer Germany, pp. 147-170. ISBN: 0340-4773

How to Cite
González-Salvatierra , C., Peña-Rodríguez , L. M., Reyes-García, C., de la Barrera, E., & Andrade, J. L. (2021). Seasonal changes in photosynthesis for the epiphytic bromeliad Tillandsia brachycaulos in a tropical dry deciduous forest. Botanical Sciences, 99(4), 850-862.