Plant growth-promoting bacteria belonging to the genera Pseudomonas and Bacillus improve the growth of sorghum seedings in a low-nutrient soil
Abstract
Background: Deficiency in sorghum growth in ecosystems of low-nutrient soils has been scarcely studied. This soil deficiency can be overcome by the addition of plant growth-promoting bacteria which increase sorghum growth.
Questions and/or Hypotheses: indole acetic acid (IAA) producing and phosphate solubilizing bacteria can promote sorghum growth under nutritional stress.
Studied species: Sorghum bicolor (L.) Moench.
Study site and dates: Mexico City, 2018.
Methods: Of the twelve bacterial strains utilized, three produce IAA (group BI), two strains produce IAA and siderophores (BIS group), four strains produce IAA and solubilize phosphate (BIP group), and three strains produce IAA, solubilize phosphate, and produce siderophores (BIPS group). Hydroponic bioassays and low-nutrient soil bioassay were used.
Results: In hydroponic bioassays, for BI and BIS groups, five strains significantly increased the growth parameters with respect to the control, and for the BIP and BIPS groups, two strains promoted stem development and shoot dry weight. In a low-nutrient soil bioassay, Pseudomonas sp. BI-1 (from BI group) was the one that presented the highest percentages 32, 48, 140 and 79 % in stem diameter, height and dry weight of the shoot and dry weight of the root, respectively, followed by the P. mohnii BIPS-10 strain (from BIPS group) that exhibited similar results.
Conclusions: IAA producing Pseudomonas strains improve the sorghum growth in a low-nutrient soil and suggest thatPseudomonas sp. BI-1 and P. mohnii BIPS-10 could be used as potential bioinoculants for sorghum.
Downloads
References
Abdel-Salam A, Elhosainy O, Wissam Z, Abdel-Salam M, Hashem I. 2015. Npk biofertilizers on sorghum (Sorghum bicolor) grown on a light clay torrifluvent soil and interactions among them. Egypt Journal Applied Sciences 30: 383-400
Adesemoye A, Obini M, Ugoji EO. 2008. Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian Journal of Microbiology 39: 423-426. DOI: https://doi.org/10.1590/S1517-83822008000300003
Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal King Saud University Science 26: 1-20. DOI: https://doi.org/10.1016/j.jksus.2013.05.001
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. 2021. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology 13: a039867. DOI: https://doi.org/10.1101/cshperspect.a039867
Castagno LN, Sannazzaro AI, Gonzalez ME, Pieckenstain FL, Estrella MJ. 2021. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Annals of Applied Biology 178: 256.267. DOI: https://doi.org/10.1111/aab.12673
Chuang CC, Kuo YL, Chao CC, Chao WL. 2007. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biology and Fertility of Soils 43: 575-584. DOI: https://doi.org/10.1007/s00374-006-0140-3
da Silva JF, da Silva TR, Escobar IEC, Fraiz ACR, Dos Santos JWM, do Nascimento TR, Dos Santos JMR, Peters SJW, de Melo RF, Signor D, Fernandes-Júnior PI. 2018. Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands. World Journal of Microbiology and Biotechnology 34: 186. DOI: https://doi.org/10.1007/s11274-018-2568-7
Flores-Núñez V, Amora-Lazcano E, Rodríguez-Dorantes A, Cruz-Maya J, Jan-Roblero J. 2018. Comparison of plant growth-promoting rhizobacteria (PGPR) in a pine forest and an agricultural soil. Soil Research 56: 346-355. DOI: https://doi.org/10.1071/SR17227
Gómez-Acata S, Amora-Lazcano E, Wang ET, Rivera-Orduña FN, Cancino-Diaz JC, Cruz-Maya JA, Jan-Roblero J. 2019. Nodule-forming Sinorhizobium and arbuscular mycorrhizal fungi (AMF) improve the growth of Acacia farnesiana (Fabaceae): an alternative for the reforestation of the Cerro de la Estrella, Mexico. Botanical Sciences 97: 609-622. DOI: https://doi.org/10.17129/botsci.2200
Grover M, Madhubala R, Ali SZ, Ydav SK, Venkateswarlu B. 2013. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. Journal of Basic Microbiology 54: 951-961. DOI: https://doi.org/10.1002/jobm.201300250
Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing HC. 2021. Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics. DOI: https://doi.org/10.1007/s00122-021-03789-z
Hungria M, Nogueira MA, Araujo RS. 2013. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils 49: 791-01. DOI: https://doi.org/10.1007/s00374-012-0771-5
Inostroza NG, Barra PJ, Wick LY, Mora ML, Jorquera MA. 2017. Effect of rhizobacterial consortia from undisturbed arid- and agro-ecosystems on wheat growth under different conditions. Letters in Applied Microbiology 64: 158-163. DOI: https://doi.org/10.1111/lam.12697
Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E. 2020. Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology 104: 8549-8565. DOI: https://doi.org/10.1007/s00253-020-10890-8
Khalid A, Arshad M, Zahir Z. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology 96: 473-480. DOI: https://doi.org/10.1046/j.1365-2672.2003.02161.x
Kochar M, Srivastava S. 2011. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum. Journal of Basic Microbiology 52: 123-131. DOI: https://doi.org/10.1002/jobm.201100038
Koskey G, Mburu SW, Njeru EM, Kimiti JM, Ombori O, Maingi JM. 2017. Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern Kenya. Frontiers in Plant Science 8: 443. DOI: https://doi.org/10.3389/fpls.2017.00443
Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M, Kumar V, Dhaliwal HS, Saxena AK. 2021. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 31: 43-75. DOI: https://doi.org/10.1016/S1002-0160(20)60057-1
Kumar GP, Kishore N, Amalraj ELD, Ahmed S, Rasul A, Desai S. 2012. Evaluation of fluorescent Pseudomonas spp. with single and multiple PGPR traits for plant growth promotion of sorghum in combination with AM fungi. Plant Growth Regulation 67:133-140. DOI: https://doi.org/10.1007/s10725-012-9670-x
Kumar A, Tripti, Maleva M, Bruno LB, Rajkumar M. 2021. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere 276: 130038. DOI: https://doi.org/10.1016/j.chemosphere.2021.130038
Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. 2017. Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research international 24: 3315-3335. DOI: https://doi.org/10.1007/s11356-016-8104-0
Majda M, Robert S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences 19: 951. https://doi.org/10.3390/ijms19040951
Mareque C, Taulé C, Beracochea M, Battistoni F. 2015. Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Annals of Microbiology 65: 1057-1067. DOI: https://doi.org/10.1007/s13213-014-0951-7
Mull JGC, de la Riva GA, Vargas-Sámano CD, Pérez-Machado G, Agüero-Chapin G. 2017. Plant growth promoting bacteria isolated from a Mexican natural ecosystem induce water stress resistance in maize and sorghum plants. Journal of Microbial and Biochemical Technology 9: 209-219. DOI: https://doi.org/10.4172/1948-5948.1000367
Nasidi M, Agu R, Deeni Y, Walker G. 2016. Utilization of whole sorghum crop residues for bioethanol production. Journal of the Institute of Brewing 122: 268-277. DOI: https://doi.org/10.1002/jib.324
SAGARPA [Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación]. 2017. Planeación agrícola nacional 2017-2030. Primera Edición. Ciudad de México, México. https://www.gob.mx/cms/uploads/attachment/file/256433/B_sico-Sorgo_Grano.pdf (accessed May 19, 2020).
Santillana-Villanueva N. 2006. Biofertilizer production using Pseudomonas sp. Ecología Aplicada 5: 87-91.
Santos MS, Nogueira MA, Hungria M. 2019. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9: 205. DOI: https://doi.org/10.1186/s13568-019-0932-0
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: 587. DOI: https://doi.org/10.1186/2193-1801-2-587
Valverde A, Burgos A, Fiscella T, Rivas R, Veláquez E, Rodríguez-Barrueco C, Cervantes E, Chamber M, Igual JM. 2007. Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. In: Velázquez E, Rodríguez-Barrueco C, eds. First International Meeting on Microbial Phosphate Solubilization, Developments in Plant and Soil Sciences. Dordrecht: Springer Netherlands, pp. 43-50. DOI: https://doi.org/10.1007/978-1-4020-5765-6_5

Copyright (c) 2021 Botanical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.