Mating and breeding systems in Echeveria strictiflora and Echeveria subalpina (Crassulaceae) for ex situ propagation and conservation

keywords: floral biology, inbreeding depression, Echeveria, hybridization, outbreeding, sexual reproduction

Abstract

Background: Floral and reproductive attributes influence the capacity of plants to produce gametes, the efficiency of pollen transfer, the development of viable seeds, and the recruitment of new individuals.

Question: What morphological attributes characterize sexual whorls in E. strictiflora and E. subalpina? Do intra and interspecific mating systems impact on seed production and germinability?

Studied species: Echeveria strictiflora and Echeveria subalpina.

Study site: In ex situ conditions in Mexico City from 2018 to 2020.

Methods: The spatial position and arrangement of the sexual whorls were described. The morphology of pollen grains and ovules were characterized by optical and scanning electron microscopy. The intra- and interspecific outbreeding and mating systems, as well as the production and germination of seeds were determined under controlled conditions.

Results: Both E. strictiflora and E. subalpina are herkogamous, have a mixed breeding system, and produce seeds by reciprocal hybridization. Abundant viable pollen and ovules are produced. Species are self-compatible, however, the reduction in the production and viability of the seeds produced by selfing, suggests that there is a detrimental effect due to inbreeding depression. 

Conclusions: E. strictiflora and E. subalpina produce fruits and seeds by selfing and intra- and inter-specific outbreeding, but inbreeding depression limits recruitment, revealing the importance of conserving populations with sufficient individuals to retain diversity, as well the areas of natural distribution.

Downloads

Download data is not yet available.
Mating and breeding systems in <em>Echeveria strictiflora</em> and <em>Echeveria subalpina</em> (Crassulaceae) for <em>ex situ</em> propagation and conservation

References

Aizen MA, Harder LD. 2007. Expanding the limits of the pollen limitation concept: effects of pollen quantity and quality. Ecology 88: 271-281. DOI: https://doi.org/10.1890/06-1017

Al-Mudaris MA. 1998. Notes on various parameters recording the speed of seed germination. Der ropenlandwirt-Journal of Agriculture in the Tropics and Subtropics 99: 147-154.

Alexander MP. 1969. Differential staining of aborted and non aborted pollen. Stain Technology 44: 117-122. DOI: https://doi.org/10.3109/10520296909063335

Arreguín-Sánchez ML, Palacios-Chávez R, Quiroz-García DL. 1990. Morfología de los granos de polen de los géneros Echeveria, Sedum y Villadia (Crassulaceae) del Valle de México. Cactáceas y Suculentas Mexicanas 3: 51-61.

Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D. 2015. The origins of reproductive isolation in plants. New Phytologist 207: 968-984. DOI: https://doi.org/10.1111/nph.13424

Bramlett DL, Welcher EW, DeBarr GL, Hertel GD, Karrfalt RP, Lantz CW, Miller T, Ware KD, Yates HO. 1977. Cone analysis of southern pines: a guidebook (Vol. 13). North Carolina: Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.

Braverman I. 2014. Conservation without nature: the trouble with in situ versus ex situ conservation. Geoforum 51: 47-57. DOI: https://doi.org/10.1016/j.geoforum.2013.09.018

Burd M. 1994. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. The Botanical Review 60: 83-139. DOI: https://doi.org/10.1007/BF02856594

Camacho-Velázquez A, Arias S, García-Campusano F, Sánchez-Martínez E, Vázquez-Santana S. 2018. Seed development and germination of Strombocactus species (Cactaceae): A comparative morphological and anatomical study. Flora 242: 89-101. DOI: https://doi.org/10.1016/j.flora.2018.03.006

Carrillo-Reyes P, Sosa V, Mort ME. 2009. Molecular phylogeny of the Acre clade (Crassulaceae): Dealing with the lack of definitions for Echeveria and Sedum. Molecular Phylogenetics and Evolution 53: 267-276. DOI: https://doi.org/10.1016/j.ympev.2009.05.022

Charlesworth D. 2006. Evolution of plant breeding systems. Current Biology 16: 726-735. DOI: https://doi.org/10.1016/j.cub.2006.07.068

Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10: 783-796. DOI: https://doi.org/10.1038/nrg2664

Clark-Tapia R, Molina-Freaner F. 2004. Reproductive ecology of the rare clonal cactus Stenocereus eruca in the Sonoran desert. Plant Systematics and Evolution 247: 155-164. DOI: https://doi.org/10.1007/s00606-003-0118-7

Cruden RW. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32-46. DOI: https://doi.org/10.2307/2407542

Cushman J C. 2001. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiology. 127: 1439-1448. DOI: https://doi.org/10.1104/pp.010818

de la Cruz-López LE. 2019. DNA barcoding en la sistemática y taxonomía integrativa de Echeveria (Crassulaceae). PhD Thesis. Universidad Nacional Autónoma de México.

Dai C, Galloway LF. 2011. Do dichogamy and herkogamy reduce sexual interference in a self-incompatible species? Functional Ecology 25: 271-278. DOI: https://doi.org/10.1111/j.1365-2435.2010.01795.x

Dudash MR, Murren CJ. 2008. The influence of breeding systems and mating systems on conservation genetics and conservation decisions. In: Scott PC, Charles WF, eds. Conservation biology: Evolution in action. New York: Oxford University Press, pp. 68- 80. ISBN: 978-0-19-530679-8; 978-0-19-530679-8-1

Emeterio-Lara A, Palma-Linares V, Vázquez-García LM, Mejía-Carranza J. 2016. Usos y comercialización de orquídeas silvestres en la region del sur del Estado de México. Polibotánica 42: 197-214. DOI: http://dx.doi.org/10.18387/polibotanica.42.10

Evert FR. 2006. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. Canada: John Wiley & Sons. ISBN: 9780470047385.

Flores-Lopéz C, Lopéz-Upton J, Vargas-Hernández J. 2005. Indicadores reproductivos en poblaciones naturales de Picea mexicana. Agrociencia 39: 117-126.

García-Ruiz I, Costea M. 2014. Echeveria marianae (Crassulaceae), a new species from Jalisco, México. Phytotaxa 170: 35-40. DOI: https://doi.org/10.11646/phytotaxa.170.1.4

García-Ruiz I, Torres I, Costea M. 2016. A new species of Echeveria (Crassulaceae) from Michoacán, México. Systematic Botany 41: 966-970. DOI: https://doi.org/10.1600/036364416X694071

Ghazoul J, Satake A. 2009. Nonviable seed set enhances plant fitness: the sacrificial sibling hypothesis. Ecology 90: 369-377. DOI: https://doi.org/10.1890/07-1436.1

Gibbs PE. 2014. Late acting self-incompatibility – the pariah breeding system y flowering plants. New Phytologist 203: 717-734. DOI: https://doi.org/10.1111/nph.12874

González-Mancera G, Reyes-Santiago PJ, de la Cruz-López LE, Islas-Luna MA, Sánchez-Sauza MA, Flores-García MA, Vergara-Silva F. 2018. Palynology of twenty one species of Echeveria genus (Crassulaceae) from Mexico–high resolution study. Acta Microscopica 27: 53-62.

González-Zertuche L, Orozco-Segovia A. 1996. Métodos de análisis de datos en la germinación de semillas, un ejemplo: Manfreda brachystachya. Botanical Sciences 58: 15-30. DOI: https://doi.org/10.17129/botsci.1484

Husband BC, Schemske DW. 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54-70. DOI: https://doi.org/10.1111/j.1558-5646.1996.tb04472.x

INEGI [Instituto Nacional de Estadística y Geografía]. 2017a. Anuario estadístico y geográfico del estado de Coahuila de Zaragoza. México: INEGI.

INEGI [Instituto Nacional de Estadística y Geografía]. 2017b. Anuario estadístico y geográfico del estado de Puebla. México: INEGI.

Jia J, Tan DY. 2012. Variation in style length and anther-stigma distance in Ixiolirion songaricum (Amaryllidaceae). South African Journal of Botany 81: 19-24. DOI: https://doi.org/10.1016/j.sajb.2012.03.011

Johri BM, Ambegaokar KB, Srivastava PS. 1992. Comparative Embryology of Angiosperms (vol. 1). Berlin-Heidelberg: Springer-Verlag, pp. 369-371. ISBN. 978-3-642-76397-7

Johnson NA. 2010. Hybrid incompatibility genes: remnants of a genomic battlefield? Trends in Genetics 26: 317-325. DOI: https://doi.org/10.1016/j.tig.2010.04.005

Lande R, Schemske DW. 1985. The evolution of self-fertilization and inbreeding depression in plants, II. Empirical observations. Evolution 39: 41-52. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb04078.x

Lippman ZB, Zamir D. 2007. Heterosis: revisiting the magic. Trends in Genetics 23: 60-66. DOI: https://doi.org/10.1016/j.tig.2006.12.006

Lipow SR, Wyatt R. 2000. Single gene control of postzygotic self-incompatibility in Poke milkweed, Asclepias exaltata L. Genetics 154: 893-907.

Mandujano MC, Carrillo-Angeles I, Martínez-Peralta C, Golubov J. 2010. Reproductive biology of Cactaceae. In: Ramawat KG, ed. Desert Plants. Berlin: Springer, pp. 197-230. DOI: https://doi.org/10.1007/978-3-642-02550-1_10

Mandujano MC, Montaña C, Eguiarte LE. 1996. Reproductive ecology and inbreeding depression in Opuntia rastrera (Cactaceae) in the Chihuahuan Desert: why are sexually derived recruitments so rare? American Journal of Botany 83: 63-70. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb13875.x

Márquez-Guzmán J, Wong R, Pérez M, López L, Munguía G. 2016. Técnicas de Laboratorio para el Estudio del Desarrollo en Angiospermas. Mexico, DF: Las prensas de Ciencias, Facultad de Ciencias, UNAM. ISBN: 9786070282522.

Moore JC, Pannell JR. 2011. Sexual selection in plants. Current Biology 21: 176-182. DOI: https://doi.org/10.1016/j.cub.2010.12.035

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.

Naturalista. 2020a. Echeveria strictiflora. https://www.naturalista.mx/taxa/162166-Echeveria-strictiflora (accessed june 18, 2020).

Naturalista. 2020b. Echeveria subalpina. https://www.naturalista.mx/taxa/275986-Echeveria-subalpina (accessed june 18, 2020).

Opedal ØH. 2018. Herkogamy, a principal functional trait of plant reproductive biology. International Journal of Plant Sciences 179: 677-687. DOI: https://doi.org/10.1086/700314

Parra-Tabla V, Vargas CF, Eguiarte LE. 1993. Reproductive biology, pollen and seed dispersal, and neighborhood size in the hummingbird-pollinated Echeveria gibbiflora (Crassulaceae). American Journal of Botany 80: 153-159. DOI: https://doi.org/10.1002/j.1537-2197.1993.tb13783.x

Parra-Tabla V, Vargas CF, Eguiarte LE. 1998. Is Echeveria gibbiflora (Crassulaceae) fecundity limited by pollen availability? An experimental study. Functional Ecology 12: 591-595. DOI: https://doi.org/10.1046/j.1365-2435.1998.00229.x

Pérez-Cálix E. 2008. Crassulaceae. Flora del Bajío y regiones adyacentes. 156. 1-152. ISBN 970-709-098-7

Qaiser M, Perveen A, Sarwar GR. 2015. Pollen morphology of the family Crassulaceae from Pakistan and Kashmir and its taxonomic implications. Pakistan Journal of Botany 47: 1481-1493.

Reyes-Santiago JP. Brachet CI. 2009. Echeveria mondragoniana, una nueva especie de la familia Crassulaceae para el estado de Oaxaca, México. Cactáceas y suculentas mexicanas 54: 82-89.

Reyes-Santiago JP, Islas-Luna, MÁ, González-Zorzano O, Carrillo-Reyes P, Vergara-Silva FR, Brachet-Ize CP. 2011. Echeveria: Manual del Perfil Diagnóstico del Género Echeveria en México. México: Universidad Autónoma de Chapingo. ISBN: 978-607-12-0218-5

Rodríguez-Rojas TJ, Andrade-Rodríguez M, Canul-Ku J, Castillo-Gutiérrez A, Martínez-Fernández E, Guillén-Sánchez D. 2015. Viabilidad de polen, receptividad del estigma y tipo de polinización en cinco especies de Echeveria en condiciones de invernadero. Revista Mexicana de Ciencias Agrícolas 6: 111-123. https://doi.org/10.29312/remexca.v6i1.743

Saatkamp A, Affre L, Dutoit T, Poschlod P. 2011. Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields. Annals of Botany 107: 415-426. https://doi.org/10.1093/aob/mcq255

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental – Especies nativas de México de flora y fauna silvestres – Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - Lista de especies en riesgo. Diario Oficial de la Federación. 2da Sección, 30 de diciembre de 2010.

Sponberg SA. 1978. The genera of Crassulaceae in the southeastern United States. Journal of the Arnold Arboretum 59: 198-248. https://doi.org/10.5962/bhl.part.22772

Tejaswini GK, Shankeer R. 2001. Sexual selection in plants: the process, components and significance. PINSA B 67: 423-432.

Uhl CH. 1992. Polyploidy, dysploidy, and chromosome pairing in Echeveria (Crassulaceae) and its hybrids. American Journal of Botany 79: 556-566. DOI: https://doi.org/10.1002/j.1537-2197.1992.tb14593.x

Uhl C, Moran R, Kimnach M. 2005. Chromosomes and hybrids of Echeveria DC. IX. Series Spicatae (Baker) Berger. Haseltonia 22: 138-150. DOI: https://doi.org/10.2985/1070-0048(2005)11[138:CAHOED]2.0.CO;2

Vilas C, San Miguel E, Amaro R, Garcia,C. 2006. Relative contribution of inbreeding depression and eroded adaptive diversity to extinction risk in small populations of shore campion. Conservation Biology 20: 229-238. DOI: https://doi.org/10.1111/j.1523-1739.2005.00275.x

Vogler DW, Kalisz S. 2001. Sex among the flowers: the distribution of plant mating systems. Evolution 55: 202-204. DOI: https://doi.org/10.1111/j.0014-3820.2001.tb01285.x

Volis S, Blecher M. 2010. Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biodiversity and Conservation 19: 2441-2454. https://doi.org/10.1007/s10531-010-9849-2

Walther E. 1972. Echeveria. USA. California: Academy of Sciences. ISBN. 978-0940228054

Published
2021-08-11
How to Cite
Álvarez-Álvarez, J., Vázquez-Santana , S., & García-Campusano, F. (2021). Mating and breeding systems in Echeveria strictiflora and Echeveria subalpina (Crassulaceae) for ex situ propagation and conservation. Botanical Sciences, 99(4), 807-822. https://doi.org/10.17129/botsci.2803
Section
ECOLOGY / ECOLOGÍA