Germination and developmental conditions of Pouteria campechiana (Sapotaceae) plants

keywords: Canistel, cultivation substrate, seed scarification, sowing position

Abstract

Background: Pouteria campechiana, a fruit tree native to Mexico, is a species important for its nutritional, medicinal and timber attributes, which requires plant production and propagation techniques. In this study germination and seedling development were evaluated in response to the combination of scarification, sowing position and substrate.

Questions: Do scarification and planting position influence the percentage and speed of germination? Does the transplanting to different substrates have an effect on the seedling development?

Species studied: Pouteria campechiana (Kunt) Baehni (Sapotaceae)

Study site and dates: Yautepec, Morelos, México. From March to June 2018.

Methods: The fruits and seeds were characterized; the germination treatments were manual scarification and two sowing positions (scarified-horizontal, scarified-vertical, not scarified-horizontal, not scarified-vertical), agrolite and a mixed substrate were used, the experimental design was random blocks and the variance statistical analysis applied.

Results: The seeds had similar size without depending on the size of the fruit. The germination percentage was high (90 % in scarified-vertical and 100 % in not scarified-horizontal). The germination speed in scarified and sown horizontally was 2 seeds/day. Seedlings sown horizontally presented greater plant size and a higher number of leaves when transplanted to the agrolite substrate.

Conclusions: The seeds from fruits of different sizes had a similar size, the scarification and sowing position did not influence the percentage but affected the speed of germination; scarification and the agrolite substrate favored the development of the seedlings after transplantation.

Downloads

Download data is not yet available.
Germination and developmental conditions of <em>Pouteria campechiana</em> (Sapotaceae) plants

References

Álvarez R, Quintero I, Manzano MJ, González D. 2009. Emergencia y características de plántulas de Chrysophyllum cainito L. (Sapotaceae) bajo diferentes tratamientos pregerminativos y posición de siembra de la semilla. Revista UDO Agrícola 9: 333-342. ISSN-e 1317-9152
Amoakoh O, Nortey DDN, Sagoe F, Amoako PK, Jallah CK. 2017. Effects of pre-sowing treatments on the germination and early growth performance of Pouteria campechiana. Forest Science and Technology 13: 83-86. DOI: https://doi.org/10.1080/21580103.2017.1315961
Andrade R, Geraldo A, Sarzi I. 2002. Effect of temperature on percentage of germination of canistel seeds (Pouteria campechiana). Revista Brasileira de Fruticultura 24: 622-623. DOI: https://doi.org/10.1590/S0100-29452002000300010
Arenas-Ocampo ML, Evangelista-Lozano S, Arana-Errasquin R, Jiménez-Aparicio AR. Dávila-Ortíz G. 2003. Softening and biochemical changes of zapote mamey fruit (Pouteria sapota) at different development and ripening stages. Journal of Food Biochemistry 27: 91-107. DOI: https://doi.org/10.1111/j.1745-4514.2003.tb00269.x
Aseervatham SBG, Manthra V, Ireen C, Thilagameena S, Akshaya S, Mary AC, Giriprashanthini S. Sivasudha T. 2019. Free radical scavenging potential and antihaemolytic activity of methanolic extract of Pouteria campechiana (Kunth) Baehni and Tricosanthes tricuspidata Linn. Biocatalysis and Agricultural Biotechnology 18: 101031. DOI: https://doi.org/10.1016/j.bcab.2019.101031
Atapattu NSBM, Sanjeewani KGS, Senaratna D. 2014. Effects of dietary canistel (Pouteria campechiana) fruit meal on growth performance and carcass parameters of broiler chicken. Tropical Agricultural Research and Extension 16: 34-39. DOI: http://doi.org/10.4038/tare.v16i2.5272
Awang-Kanak F, Bakar MFA. 2018. Canistel-Pouteria campechiana (Kunth) Baehni. In: Rodrigues S, de Oliveira E, Sousa E, eds. Exotic Fruits. Academic Press, pp. 107-111. DOI: https://doi.org/10.1016/B978-0-12-803138-4.00015-0
Azurdia C. 2005. Tres especies de Zapote en América Tropical: Pouteria campechiana (Canistel), P. sapota (Zapote Mamey) y P. viridis (Zapote Verde). United Kingdom, Southampton: International Centre for Underutilised Crops. ISBN: 085432836X
Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F. 2009. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiology 150: 1006-1021. DOI: https://doi.org/10.1104/pp.109.137901
Baskin CC, Baskin JM. 2014a. Chapter 1-Introduction. In: Baskin CC, Baskin JM. eds. Seeds. Academic Press: Cambridge, Massachusetts, United States. pp. 1-3. DOI: https://doi.org/10.1016/B978-0-12-416677-6.00001-9
Baskin CC, Baskin JM. 2014b. Chapter 3 -Types of seeds and kinds of seed dormancy. In: Baskin CC, Baskin JM. eds. Seeds. Academic Press: Cambridge, Massachusetts, United States. pp. 63-64. DOI: https://doi.org/10.1016/b978-0-12-416677-6.00003-2
Baskin CC, Baskin JM. 2014c. Chapter 6 - Germination ecology of seeds with physical dormancy. In: Baskin CC, Baskin JM. eds. Seeds. Academic Press: Cambridge, Massachusetts, United States. pp. 145-185. DOI: http://dx.doi.org/10.1016/B978-0-12-416677-6.00006-8
Benvenuti S. 2003. Soil texture involvement in germination and emergence of buried weed seeds. Agronomy Journal 95: 191-198. DOI: https://doi.org/10.2134/AGRONJ2003.1910
Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. 2013. Dormancy and the control of germination. In: Seeds. Springer Science+Business Media, pp. 247-297. DOI: https://doi.org/10.1007/978-1-4614-4693-4_6
Chiamolera FM, Silva ACC, Sabião RR, Cunha TPL, Martins ABG. 2014. Clonagem de canistel por estaquia. Revista Brasileira de Fruticultura 36: 649-654. DOI: https://doi.org/10.1590/0100-2945-312/13
De Lanerolle M, Priyadarshani AM, Sumithraarachchi DB, Jansz ER. 2008. The carotenoids of Pouteria campechiana (Sinhala: ratalawulu). Journal of the National Science Foundation of Sri Lanka 36: 95-98. DOI: http://doi.org/10.4038/jnsfsr.v36i1.136
Del Amo RS, Vergara TDCM, Ramos PJM, Sainz CC. 2002. Germinación y manejo de especies forestales tropicales. https://www.uv.mx/personal/sdelamo/files/2012/11/Germinacion-y-manejo-de-especies.pdf (accessed June 15, 2020).
Di Gioia F, De Bellis P, Mininni C, Santamaria P, Serio F. 2017. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. Journal of the Science of Food and Agriculture 97: 1212-1219. DOI: https://doi.org/10.1002/jsfa.7852
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Di RCW. 2008. InfoStat, versión 2008. Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. https://www.infostat.com.ar/index.php?mod=page&id=34 (accessed June 12, 2020).
Duarte O, Villagrán L. 2002. Efecto de la escarificación, remojo en ácido giberélico, posición de siembra y edad de la semilla en la germinación y conformación de plántulas de canistel (Pouteria campechiana Baehni). In: 48th Annual Meeting of the Interamerican Society for Tropical HorticultureProceedings of the Interamericam Society for Tropical Horticulture. Tegucigalpa, Honduras. https://iasth.org/xlviii-48th/ (accessed June 28, 2020).
Evangelista-Lozano S, Robles-Jimarez HR, Briones-Martínez R, Escobar-Arellano SL, Pérez-Barcena JF. 2019. Análisis proximal de frutos de Pouteria campechiana (Kunth Baehni). In: Durán HD, Tzintzun CO, Grimaldo-Juárez O, González-Mendoza D, Ceceña-Durán C, Cervantes DL, Michel LCY, Ruiz AC, eds. Compendio Científico en Ciencias Agrícolas y Biotecnología. OmniaScience (Omnia Publisher SL): Terrassa, Barcelona, España. 1:85-90. DOI: https://doi.org/10.3926/XXICICA-vol1
FAO [Food and Agriculture Organization]. 1993. Manual de capacitación: Prevención de pérdidas de alimentos poscosecha: frutas, hortalizas, raíces y tubérculos. In: Barden J, Wills RBH, Toet A, Shepherd A, eds. Manual de capacitación. Italia, Roma: Colección FAO, Capacitación 17/2. http://www.fao.org/3/t0073s/T0073S00.htm#Contents (accessed November 20, 2020).
Feizi H, Rezvani MP, Shahtahmassebi N, Fotovat A. 2012. Impact of bulk and nano sized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146: 101-106. DOI: http://dx.doi.org/10.1007/s12011-011-9222-7
Forcella F, Benech-Arnold RL, Sánchez R, Ghersa CM. 2000. Modelling seedling emergence. Field Crops Research 67: 123-139. DOI: https://doi.org/10.1016/S0378-4290(00)00088-5
Franzmeier DP, McFee WW, Graveel JG, Kohnke H. 2016. Soil science simplified. Unite State of America, Long Grove. Waveland Press Inc. ISBN: 1-4786-2907-X
Giuffrida MV, Minervini M, Tsaftaris S. 2015. Learning to count leaves in rosette plants. In: Tsaftaris SA, Scharr H, Pridmore T, eds. Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP). BMVA Press, pp. 1.1-1.13. DOI: https://dx.doi.org/10.5244/C.29.CVPPP.1
González AF, Pita VJM. 2001. Conservación y Caracterización de Recursos Fitogenéticos. España, Madrid: Mundi–Prensa. http://agris.fao.org/agris-search/search.do?recordID=US201300073062 (accessed June 1, 2020).
González GC. 2004. Algunas ideas sobre la presencia del zapote en el culto a Xipe Totee. México, CDMX. Estudios Mesoamericanos. Universidad Nacional Autónoma de México. 6:38-47. www.iifilologicas.unam.mx/.../zapote_xipe_carlos_gnzlz2.pdf (accessed October 12, 2019).
Iriondo AJM. 2001. Conservación de germoplasma de especies raras y amenazadas. Investigación Agraria Producción y Protección Vegetal 16: 5-24. ISSN 0213-5000
Jaganathan GK, Wu GR, Han YY, Liu BL. 2017. Role of the lens in controlling physical dormancy break and germination of Delonix regia (Fabaceae: Caesalpinioideae). Plant Biology 19: 53-60. DOI: https://doi.org/10.1111/plb.12451
Kadereit G, Newton RJ, Vandelook F. 2017. Evolutionary ecology of fast seed germination - A case study in Amaranthaceae/Chenopodiaceae. Perspectives in Plant Ecology, Evolution and Systematics 29: 1-11. DOI: https://doi.org/10.1016/j.ppees.2017.09.007
Kong KW, Khoo HE, Prasad NK, Chew LY, Amin I. 2013. Total phenolics and antioxidant activities of Pouteria campechiana fruit parts. Sains Malays 42: 123-127. http://www.ukm.my/jsm/pdf_files/SM-PDF-42-2-2013/01%20K.W.%20Kong.pdf (accessed January 31, 2020).
Khurana EKTA, Singh JS. 2001. Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environmental Conservation 28: 39-52. DOI: https://doi.org/10.1017/S0376892901000042
Lim TK. 2013. Fruits. In: Edible Medicinal and Non-Medicinal Plants. Springer Science & Business Media, pp. 133. DOI: https://doi.org/10.1007/978-94-007-5628-1_23
Maguire JD. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science 2: 176-177. DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Martín F, Malo S. 1978. Part 5. The canistel and its relatives. In: Cultivation of Neglected Tropical Fruits with promise. Office of the Regional Administrator for Federal Research (Southern Region): Science and Education Administration Department of Agriculture, pp. 1-12.
Melrose J, Perroy R, Careas S. 2015. Implementation of the global efficiency equipment in the machining sector. In: State Wide Agricultural Land Use Base Line. University of Hawai‘i at Hilo and spatial data analysis and visualization research Lab: Hawaii Department of Agriculture, pp. 163-172. https://hdoa.hawaii.gov/salub/ (accessed January 31, 2020).
Mondragón-Valero A, Lopéz-Cortés I, Salazar DM, de Córdova PF. 2017. Physical mechanisms produced in the development of nursery almond trees (Prunus dulcis Miller) as a response to the plant adaptation to different substrates. Rhizosphere 3: 44-49. DOI: https://doi.org/https://doi.org/10.1016/j.rhisph.2016.12.002
Mourão KSM, Beltrati CM. 2000. Morphology and anatomy of developing fruits and seeds of Mammea americana L. (Clusiaceae). Revista Brasileira de Biología 60:701-711. DOI: http://dx.doi.org/10.1590/S0034-71082000000400023
Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S. 2009. Agroforest tree Database: A Tree Reference and Selection Guide Version 4.0. Kenya: World Agroforestry Centre. http://outputs.worldagroforestry.org/cgi-bin/koha/opac-detail.pl?biblionumber=37111 (accessed January 31, 2020).
Pariona N, Martínez AI, Hernandez-Flores H, Clark-Tapia R. 2017. Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Science of the Total Environment 575: 869-875. DOI: https://doi.org/10.1016/j.scitotenv.2016.09.128
Pennington TD, Sarukhán J. 2016. Árboles tropicales de México. Manual para la identificación de las principales especies. México, CDMX: Dirección General de Publicaciones y Fomento Editorial, Universidad Autónoma de México. pp. 438. ISBN/ISSN 9789703216437
Rosell JA, Olson ME. 2014. The evolution of bark mechanics and storage across habitats in a clade of tropical trees. American Journal of Botany 101: 764– 777. DOI: https://doi.org/10.3732/ajb.1400109
Sakai S, Sakai A. 1995. Flower-dependent variation in seed size: theory and a test. The American Naturalist 145: 918-934. DOI: https://doi.org/10.1086/285776
Souza FH, Marcos-Filho J. 2001. The seed coat as a modulator of seed-environment relationships in Fabaceae. Brazilian Journal of Botany 24: 365-375 DOI: https://doi.org/10.1590/S0100-84042001000400002
Tuan PA, Sun M, Nguyen TN, Park S, Ayele BT. 2019. 1 - Molecular mechanisms of seed germination. In: Feng H, Nemzer B, W. DeVries J, eds. Sprouted Grains. AACC International Press, pp. 1-24. ISBN 9780128115251. DOI: https://doi.org/10.1016/B978-0-12-811525-1.00001-4
Valdés-Rodríguez OA, Sánchez-Sánchez O, Pérez-Vázquez A. 2013. Effects of soil texture on germination and survival of non-toxic Jatropha curcas seeds. Biomass and Bioenergy 48: 167-170. DOI: https://doi.org/10.1016/j.biombioe.2012.10.025
Published
2021-02-14
How to Cite
Pérez-Barcena, J. F., Cruz-Castillo, J. G., De Jesús-Sánchez, A., Jiménez-Aparicio, A. R., & Evangelista-Lozano, S. (2021). Germination and developmental conditions of Pouteria campechiana (Sapotaceae) plants. Botanical Sciences, 99(2), 377-387. https://doi.org/10.17129/botsci.2796
Section
PHYSIOLOGY / FISIOLOGÍA