A population genetics study of three native Mexican woody bamboo species of Guadua (Poaceae: Bambusoideae: Bambuseae: Guaduinae) using nuclear microsatellite markers

keywords: bamboos, genetic diversity, genetic structure, sporadic and massive flowering, polyploid

Abstract

Background: Sporadic flowering contributes significantly to genetic diversity and connectivity among populations. Woody bamboos present sporadic or gregarious flowering patterns with long flowering cycles. In this study, we analyze the genetic diversity of three Guadua species distributed along the Gulf of Mexico slope that have different patterns of flowering.

Questions: (1) Are the three Guadua species genetically differentiated? (2) Does the vulnerable species G. inermis have low levels of genetic diversity? (3) What is the relative contribution of geographic and environmental factors to the genetic structure of G. inermis?

Species studied: Guadua inermis, G. amplexifolia and G. tuxtlensis

Study site and dates: During 2014 and 2015, we collected samples of G. inermis in Puebla and southeastern Mexico, G. amplexifolia in Veracruz and Oaxaca, and G. tuxtlensis in southern Veracruz.

Methods: We successfully amplified five of nine SSR markers, and genotyped a total of 155 samples.

Results: The three Guadua species were genetically differentiated. For G. inermis, we found high levels of population genetic diversity, which are relatively higher than those of other monocot species. Genetic differentiation was high and three groups were detected: north, central and south. We found a significant association between genetic distances and the maximum temperature of the warmest month, but not with geographic distance.

Conclusions: Our study is the first to analyze levels of genetic diversity in Mexican bamboos and confirms their taxonomic identity. G. inermis has a strong genetic structure, even when populations are geographically close.

Downloads

Download data is not yet available.
A population genetics study of three native Mexican woody bamboo species of <em>Guadua</em> (Poaceae: Bambusoideae: Bambuseae: Guaduinae) using nuclear microsatellite markers

References

Abreu AG, Grombone-Guaratini MT, Monteiro M, Pinheiro JB, Tombolato AFC, Zucchi MI. 2011. Development of microsatellite markers for Aulonemia aristulata (Poaceae) and cross-amplification in other bamboo species. American Journal of Botany 98: e90-2. DOI: https://doi.org/10.3732/ajb.1000511

Aguilera López S. 2020. Estructura genética de Guadua inermis (Poaceae:Bambusoideae), especie endémica de la vertiente del golfo de México. BSc Thesis. Universidad de Guadalajara,.

Attigala L, Gallaher T, Nason J, Clark LG. 2017. Genetic diversity and population structure of the threatened temperate woody bamboo Kuruna debilis (Poaceae: Bambusoideae: Arundinarieae) from Sri Lanka based on microsatellite analysis. Journal of the National Science Foundation of Sri Lanka 45: 53-5. DOI: https://doi.org/10.4038/jnsfsr.v45i1.8038

Baduel P, Bray S, Vallejo-Marin M, Kolár F, Yant L. 2018. The “Polyploid Hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Frontiers in Ecology and Evolution 6: 1-19. DOI: https://doi.org/10.3389/fevo.2018.00117

Banik RL. 1998. Reproductive biology and flowering populations with diversities in muli bamboo, Melocanna baccifera (Roxb.) Kurz. Bangladesh Journal of Forest Science 27: 1-15.

Barto? K. 2018. MuMIn: multi-model inference. R package version 1.4.

Bhattacharya S, Ghosh JS, Das M, Pal A. 2009. Morphological and molecular characterization of Thamnocalamus spathiflorus subsp. spathiflorus at population level. Plant Systematic and Evolution 282: 13-20. DOI: https://doi.org/10.1007/s00606-008-0092-1

Bogdziewicz M, Pesendorfer M, Crone EE, Pérez-Izquierdo C, Bonal R. 2020. Flowering synchrony drives reproductive success in a wind-pollinated tree. Ecology Letters 23: 1820-1826. DOI: https://doi.org/10.1111/ele.13609

Chávez-Pesqueira M, Suárez Montes P, Castillo G, Núñez-Farfán J. 2014. Habitat fragmentation threatens wild populations of Carica papaya (Caricaceae) in a lowland rainforest. American Journal of Botany 101: 1092-1101. DOI: https://doi.org/10.3732/ajb.1400051

Chen LN, Cui YZ, Wong KM, Li DZ, Yang HQ. 2017. Breeding system and pollination of two closely related bamboo species. AoB Plants 9: plx021. DOI: https://doi.org/10.1093/aobpla/plx021

Clark LG. 1997. Bamboos: the centerpiece of the grass family. In: Chapman GP. ed. The Bamboos. London: Academic Press, pp. 237-248. ISBN: 9780674428683

Clark LG, Londoño X, Ruiz-Sanchez E. 2015. Bamboo taxonomy and habitat. In: Liese W, Köhl M, eds. Bamboo: The plant and its uses. Switzerland: Springer International Publishing, pp. 1-30. DOI: https://dx.doi.org/10.1007/978-3-319-14133-6_1

Clark LV, Jasieniuk M. 2011. POLYSAT: An R package for polyploidy microsatellite analysis. Molecular Ecology Resources 11: 562-566. DOI: https://doi.org/10.1111/j.1755-0998.2011.02985.x

Clarke RT, Rothery P, Raybould AF. 2002. Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. Journal of Agricultural, Biological, and Environmental Statistics 7: 361-372. DOI: https://doi.org/10.1198/108571102320

Cortés-Rodríguez GR. 2000. Los bambúes nativos de México. CONABIO. Biodiversitas 30: 12-15.

De Silva HN, Hall AJ, Rikkerink E, McNeilage MA, Fraser LG. 2005. Estimation of allele frequencies in polyploids under certain patterns of inheritance. Heredity 95: 327-334. DOI: https://doi.org/10.1038/sj.hdy.6800728

Domínguez CA, Dirzo R. 1995. Rainfall and flowering synchrony in a tropical shrub: Variable selection on the flowering time of Erythroxylum havanense. Evolutionary Ecology 9: 204-216. DOI: https://doi.org/10.1007/BF01237757

Doyle JJ, Doyle JJ. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Earl D, vonHoldt BM. 2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics 4: 359-361. DOI: https://doi.org/10.1007/s12686-011-9548-7

Esselink GD, Nybom H, Vosman B. 2004. Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theoretical and Applied Genetics 109: 402-408. DOI: https://doi.org/ 10.1007/s00122-004-1645-5

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology 14: 2611-2620. DOI: https://doi.org/10.1111/j.1365-294X.2005.02553.x

Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants. Science 296: 1689-1691. DOI: https://doi.org/10.1126/science.1071617

Franklin DC. 2004. Synchrony and asynchrony: observations and hypothesis for the flowering wave in a long-lived semelparous bamboo. Journal of Biogeography 31: 773-786. DOI: https://doi.org/10.1111/j.1365-2699.2003.01057.x

Gadgil M, Prasad SN. 1984. Ecological determinants of life history evolution of two Indian bamboo species. Biotropica 16: 161-172. DOI: https://doi.org/10.2307/2388050

Guerreiro C. 2014. Flowering cycles of woody bamboos native to southern South America. Journal of Plant Research 127: 307-313. DOI: https://doi.org/10.1007/s10265-013-0593-z

Guerreiro C, Peichoto M, Vega AS. 2020. Flowering of Guadua trinii (Poaceae, Bambusoideae, Bambuseae). Rodriguésia 71: e03352018. DOI: https://doi.org/10.1590/2175-7860202071033

Guo ZH, Ma PF, Yang GQ, Hu JY, Liu YL, Xia EH, Zhao L, Sun GL, Xu YX, Zhao Yj, Zhang. YC, Zhang XM, Zhou MY, Guo Y, Guo C, Liu JX, Ye XY, Chen YM, Yang Y, Han B, Lin CS, Lu Y, Li DZ. 2019. Genome sequences provide insights into the reticulate origin and unique traits of woody Bamboos. Molecular Plant 12: 1353-1365. DOI: https://doi.org/10.1016/j.molp.2019.05.009

Hamrick JL, Godt MJW. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1291-1298. DOI: https://doi.org/10.1098/rstb.1996.0112

Hardy OJ, Vekemans X. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620. DOI: https://doi.org/10.1046/j.1471-8286.2002.00305.x

Hijmans RJ. 2019. Geosphere: Spherical Trigonometry. R package version 1.5-10.

Huang L, Xing XC, Li WW, Zhou Y, Zhang YQ, Xue C, Ren Y, Kang JQ. 2020. Population genetic structure of the giant panda staple food bamboo (Fargesia spathacea complex) and its taxonomic implications. Journal of Systematics and Evolution DOI: https://doi.org/10.1111/jse.12594

Janzen DH. 1976. Why bamboos wait so long to flower. Annual Review of Ecology and Systematics 7: 347-391. DOI: https://doi.org/10.1146/annurev.es.07.110176.002023

Jiang W, Bai T, Dai H, Wei Q, Zhang W, Ding Y. 2017. Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)-a primarily asexual reproduction species in China. Tree Genetics & Genomes 13: 130. DOI: https://doi.org/10.1007/s11295-017-1212-2

Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11: 94. DOI: https://doi.org/10.1186/1471-2156-11-94

Judziewicz EJ, Clark LG, Londoño X, Stern MJ. 1999. American Bamboos. Washington, DC: Smithsonian Institution Press. ISBN: 1560985690.

Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2: e281. DOI: https://doi.org/10.7717/peerj.281

Kirkpatrick M. 2000. Reinforcement and divergence under assortive mating. Proceedings of the Royal Society of London. Series B: Biological Sciences 267: 1649-1655. DOI: https://doi.org/10.1098/rspb.2000.1191

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15: 1179-1191. DOI: https://doi.org/10.1111/1755-0998.12387

Liebsch D, Reginato M. 2009. Florescimento e frutificação de Merostachys skvortzovii Sendulsky (taquara-lixa) no estado do Paraná. Iheringia. Série Botânica 64: 53-56.

Londoño X. 2001. Guadua Kunth. In: Wanderley MGL, Shepherd G, Giulietti AM, eds. Poaceae, Flora fanerogâmica do estado de São Paulo. São Paulo: Hucitec, pp 38-39. ISBN: 85-7523-051-4.

Londoño X. 2002. Distribución, morfología, taxonomía, anatomía, silvicultura y usos de los bambúes del Nuevo Mundo. Universidad Nacional de Colombia, Santa Fe de Bogotá. http://www.maderinsa.com/guadua/taller.html (accessed November 3, 2020).

Londoño X. 2011. El Bambú en Colombia. Biotecnología Vegetal 11: 143-154.

Londoño X, Peterson PM. 1991. Guadua sarcocarpa (Poaceae: Bambuseae), a new species of Amazonian bamboo with fleshy fruits. Systematic Botany 16: 630-638. DOI: https://doi.org/10.2307/2418866

Londoño X, Ruiz-Sanchez E. 2014. Guadua tuxtlensis (Poaceae: Bambusoideae: Bambuseae: Guaduinae): Una nueva especie inadvertida de la región de Los Tuxtlas, Veracruz, México. Botanical Sciences 92: 481-488. DOI: https://doi.org/10.17129/botsci.76

Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C. 2005. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95: 255-273. DOI: https://doi.org/10.1038/sj.hdy.6800725

Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, IntraBioDiv Consortium. 2012. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Molecular Ecology 21: 3729-3738. DOI: https://doi.org/10.1111/j.1365-294X.2012.05656.x

Medina JC, Medina DM. 1965. Observacoes citológicas em Guadua superba Huber. Bragantia. 12: 63-68.

Meena RK, Bhandhari MS, Barhwal S, Ginwal HS. 2019. Genetic diversity and structure of Dendrocalamus hamiltonii natural metapopulation: a commercially important bamboo species of northeast Himalayas. 3 Biotech 9: 60. DOI: https://doi.org/10.1007/s13205-019-1591-1

Meirmans PG. 2020. GENODIVE version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Molecular Ecology Resources 20: 1126-1131. DOI: https://doi.org/10.1111/1755-0998.13145

Moody ME, Mueller LD, Soltis DE. 1993. Genetic variation and random drift in autotetraploid populations. Genetics 134: 64-657.

Muñoz JE, Londoño X, Rugeles P, Posso AM, Vallejo FA. 2010. Diversidad y estructura genética de Guadua angustifolia en la ecorregión cafetera colombiana. Recursos Naturales y Ambiente 61: 45-52

Naimi B. 2015. usdm: Uncertainty analysis for species distribution models. R package version, 1.1.18.

Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. DOI: https://doi.org/10.1111/j.1365-294X.2004.02141.x

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H, Oksanen MJ. 2013. Package vegan. Community Ecology Package, version 2: pp.1-295.

Ornelas JF, Gándara E, Vásquez-Aguilar AA, Ramírez-Barahona S, Ortiz-Rodriguez AE, González C, Mejía-Saules T, Ruiz-Sanchez E. 2016. A mistletoe tale: postglacial invasion of Psittacanthus schiedeanus (Loranthaceae) to Mesoamerican cloud forests revealed by molecular data and species distribution modeling. BMC Evolutionary Biology 16: 78. DOI: https://doi.org/10.1186/s12862-016-0648-6

Ornelas JF, Ortiz-Rodriguez AE, Ruiz-Sanchez E, Sosa V, Pérez-Farrera MÁ. 2019. Ups and downs: genetic differentiation among populations of the Podocarpus (Podocarpaceae) species in Mesoamerica. Molecular Phylogenetics and Evolution 138: 17-30. DOI: https://doi.org/10.1016/j.ympev.2019.05.025

Pérez-Galindo P, Carlos Andrés C, Ginzález G, Iván Andrés I, Cárdenas C, Heiber H. 2009. Cloning and isolation of tetra nucleotide microsatellite clones from Guadua angustifolia (Poaceae: Bambusoideae). Molecular Ecology Resources 9: 1375-1379.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure from multilocus genotype data. Genetics 155: 945-959.

Posso T. 2011. Diversidad Genética y Estructura Poblacional de Guadua angustifolia Kunth en el eje cafetero Colombiano. MSc Thesis, Universidad Nacional de Colombia.

Reed DH, Frankham R. 2003. Correlation between fitness and genetic diversity. Conservation Biology 17: 230-237.

Reisch C, Poschlod P. 2009. Land use affects flowering time: seasonal and genetic differentiation in the grassland plant Scabiosa columbaria. Evolutionary Ecology 23: 753-764. DOI: https://doi.org/10.1007/s10682-008-9270-4

Rodríguez-Pérez J, Traveset A. 2016. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub. AOB Plants 8: plw007. DOI: https://doi.org/10.1093/aobpla/plw007

Rosenberg NA. 2003. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137-138. DOI: https://doi.org/10.1046/j.1471-8286.2003.00566.x

Rousset F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219-28.

Ruiz-Sanchez E. 2011. Biogeography and divergence time estimates of woody bamboos: insights in the evolution of Neotropical bamboos. Botanical Sciences 88: 67-75. DOI: https://doi.org/10.17129/botsci.312

Ruiz-Sanchez E, Clark LG, Londoño X, Mejía-Saulés T, Cortés G. 2015. Morphological keys to the genera and species of bamboos (Poaceae: Bambusoideae) of Mexico. Phytotaxa 236: 1-24. DOI: https://doi.org/10.11646/phytotaxa.236.1.1

Ruiz-Sanchez E, Mendoza-Gonzalez G, Rojas-Soto O. 2018. Mexican priority bamboo species under scenarios of climate change. Botanical Sciences 96: 11-23. DOI: https://doi.org/10.17129/botsci.1206

Ruiz-Sanchez E, Munguía-Lino G, Vargas-Amado G, Rodríguez A. 2020. Diversity, endemism and conservation status of native Mexican woody bamboos (Poaceae: Bambusoideae: Bambuseae). Botanical Journal of the Linnean Society 192: 281-295. DOI: https://doi.org/10.1093/botlinnean/boz062

Ruiz-Sanchez E, Ornelas J F. 2014. Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution 4: 311-328. DOI: https://doi.org/10.1002/ece3.938

Ruiz-Sanchez E, Tyrrel CD, Londoño X, Oliveira RP, Clark LG. 2021. Diversity, distribution, and classification of Neotropical woody bamboos (Poaceae: Bambusoideae) in the 21st Century. Botanical Sciences. DOI: https://doi.org/10.17129/botsci.2722

Schlaepfer DR, Braschler B, Rusterholz HP, Baur B. 2018. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9: e02488. DOI: https://doi.org/10.1002/ecs2.2488

Slatkin M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264-279. DOI: https://doi.org/10.1111/j.1558-5646.1993.tb01215.x

Soltis PS, Soltis DE. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences of the United States of America 97: 7051-7057. DOI: https://doi.org/10.1073/pnas.97.13.7051

Szpiech ZA, Jakobsson M, Rosenberg NA. 2008. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498-2504. DOI: https://doi.org/10.1093/bioinformatics/btn478

Tian B, Yang HQ, Wong KM, Liu AZ, Ruan ZY. 2012. ISSR analysis shows low genetic diversity versus high genetic differentiation for giant bamboo, Dendrocalamus giganteus (Poaceae: Bambusoideae), in China populations. Genetic Resources and Crop Evolution 59: 901-908. DOI: https://doi.org/10.1007/s10722-011-9732-3

Troup RS. 1921. The silviculture of Indian trees. Volume 1. Oxford, UK: Oxford University Press.

Tyrrell CD, Londoño X, Prieto RO, Attigala L, McDonald K, Clark LG. 2018. Molecular phylogeny and cryptic morphology reveal a new genus of West Indian woody bamboo (Poaceae: Bambusoideae: Bambuseae) hidden by convergent character evolution. Taxon 67: 916-930. DOI: https://doi.org/10.12705/675.5

Vega AS, Hernández JC. 2008. La floración de Guadua chacoensis (Poaceae, Bambusoideae, Bambuseae). Revista de la Facultad de Agronomía 28: 107-110.

Wang IJ, Bradburg GS. 2014. Isolation by environment. Molecular Ecology 23: 5649-5662. DOI: https://doi.org/10.1111/mec.12938

Xie N, Chen L, Dong Y, Yang H. 2019. Mixed mating system and variable mating patterns in tropical woody bamboos. BMC Plant Biology 19: 418. DOI: https://doi.org/10.1186/s12870-019-2024-3

Yang JB, Dong YR, Wong KM, Gu ZJ, Yang HQ, Li DZ. 2018. Genetic structure and differentiation in Dendrocalamus sinicus (Poaceae: Bambusoideae) populations provide insight into evolutionary history and speciation of woody bamboo. Scientific Reports 8: 16933. DOI: https://doi.org/10.1038/s41598-018-35269-8

Yang HQ, An MY, Gu ZJ, Tian B. 2012. Genetic Diversity and Differentiation of Dendrocalamus membranaceus (Poaceae: Bambusoideae), a Declining Bamboo Species in Yunnan, China, as Based on Inter-Simple Sequence Repeat (ISSR) Analysis. International Journal of Molecular Sciences 13: 4446-4457. DOI: https://doi.org/10.3390/ijms13044446

Zheng X, Lin S, Fu H, Wan Y, Ding Y. 2020. The bamboo flowering cycle sheds light on flowering diversity. Frontiers in Plant Science 11: 381. DOI: https://doi.org/10.3389/fpls.2020.00381

Published
2021-05-26
How to Cite
Perez-Alquicira, J., Aguilera-Lopez, S., Rico, Y., & Ruiz-Sanchez, E. (2021). A population genetics study of three native Mexican woody bamboo species of Guadua (Poaceae: Bambusoideae: Bambuseae: Guaduinae) using nuclear microsatellite markers. Botanical Sciences, 99(3), 542-559. https://doi.org/10.17129/botsci.2795
Section
GENETICS / GENÉTICA