Physiological screening of ruderal weed biomonitors of atmospheric nitrogen deposition

keywords: biomass, chlorophyll, nitrate reductase, plant nutrition, stable isotopes, atmospheric pollution


Background: Plants take up various species of reactive nitrogen and their different physiological responses to the increase of nitrogen availability can be useful in biomonitoring.

Questions: Does atmospheric nitrogen deposition affect the physiology of ruderal weeds? Which species are most responsive to the nitrogen deposition?

Studied species: Eleven ruderal weeds.

Study site and dates: Morelia, Michoacán, Mexico. 2019.

Methods: Under scenarios of 10, 20, 40 and 80 kg N ha-1year-1, we quantified plant responses of biomass production, nitrate reductase activity, chlorophyll content, photosynthetic efficiency, δ15N, nitrogen and carbon content.

Results: Total biomass production increased with the rate of nitrogen deposition for Bidens pilosa, Chloris gayana,Lepidium virginicum, and Pennisetum setaceum, as chlorophyll content in B. pilosa, C. gayana, and L. virginicum. In turn, the below- to above-ground biomass ratio decreased for B. pilosa and C. gayana, as photosynthetic efficiency in C. gayana, L. virginicum, and Chloris pycnothrix. Nitrate reductase activity was only affected in L. virginicumm, C. gayana, and T. officinale.

   With the exception of C. pycnothrix, the nitrogen content increased, while the carbon augmented in C. gayana, C. pycnothrix, and P. setaceum. The C/N ratio was reduced in B. pilosa, C. gayana, Chloris virgata, P. setaceum, and T. officinale. The δ15N was increased in B. pilosa, C. gayana, C. virgata and P. setaceum.

Conclusions: Bidens pilosa, C. gayana, L. virginicum, and P. setaceum were the species with more affected variables to nitrogen deposition, which could be useful in the biomonitoring.


Download data is not yet available.
Physiological screening of ruderal weed biomonitors of atmospheric nitrogen deposition


Arróniz-Crespo M, Leake JR, Horton P, Phoenix GK. 2008. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilization in acidic grassland. New Phytologist 180: 864-874. DOI:

Arróniz-Crespo M, Ochoa-Hueso R, Manrique E. 2012. Biomonitorización del depósito de nitrógeno atmosférico en México: Detección y prevención de daños en ecosistemas naturales. In: Cerón-Bretón R, Cerón-Breton J, Guerra-Santos J, eds. Avances y Perspectivas de la Depositación ácida en México. Campeche, México: Universidad Autónoma del Carmen, pp. 81-98. ISBN: 978-607-7826-21-7

Azcón-Bieto J, Talón M. 2008. Fundamentos de Fisiología Vegetal. Madrid, España. McGraw-Hill Interamericana. ISBN: 978-84-481-9293-8

Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20: 30-59. DOI:

Bobbink R, Hornung M, Roelofs JGM. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86: 717-738. DOI:

Britto DT, Kronzucker HJ. 2002. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 159: 567-584. DOI:

Cárate-Tandalla D, Leuschner C, Homeier J. 2015. Performance of seedlings of a shade-tolerant tropical tree species after moderate addition of N and P. Frontiers in Earth Sciences 3: 1-10. DOI:

Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559-568. DOI:[0559:NPOSWW]2.0.CO;2

Cavieres LA, Quiroz CL, Molina-Montenegro MA, Muñoz AA, Pauchard A. 2005. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspectives in Plant Ecology, Evolution and Systematics 7: 217-226. DOI:

Chen XL, Zhou JB, Liu JL, Gao ZX, Yang XY. 2009. Effects of fertilization on carbon/nitrogen ratio of maize straw and its mineralization in soil. The Journal of Applied Ecology 20: 314-319.

Chen Y, Zhang L, Shi X, Ban Y, Liu H, Zhang D. 2019a. Life history responses of spring-and autumn-germinated ephemeral plants to increased nitrogen and precipitation in the Gurbantunggut Desert. Science of the Total Environment 659: 756-763. DOI:

Chen Y, Zhang L, Shi X, Liu H, Zhang D. 2019b. Life history responses of two ephemeral plant species

to increased precipitation and nitrogen in the Gurbantunggut Desert. PeerJ 7: e6158 DOI:

Coelho C, Romão MJ. 2015. Structural and mechanistic insights on nitrate reductases. Protein Science 24: 1901-1911. DOI:

Conklin AR. 2005. Introduction to Soil Chemistry. New Jersey, USA: John Wiley & Sons. ISBN: 9780471460565

David AS, Menges ES. 2011. Microhabitat preference constrains invasive spread of non-native natal grass (Melinis repens). Biological Invasions 13: 2309-2322. DOI:

De la Barrera E, Pimienta-Barrios E, Schondube JE. 2009. Reproductive ecophysilogy. In: De la Barrera E, Smith WK, eds. Perspectives in Biophysical Plant Ecophysiology: a tribute to Park S. Nobel. Mexico City: Universidad Nacional Autónoma de México, pp. 301-335. ISBN: 9780578006765

DeEll J, Toivonen P. 2011. Practical Applications of Chlorophyll Fluorescence in Plant Biology. New York, US: Springer Science-Business Media. ISBN: 978-1-4613-5065-1

DeHayes DH, Schaberg PG, Hawley GJ, Strimbeck GR. 1999. Acid Rain Impacts on Calcium Nutrition and Forest Health. Bioscience 49: 789-800. DOI:

Díaz-Álvarez EA, de la Barrera E. 2018. Mapping pollution in a megalopolis: the case for atmospheric biomonitors of nitrogen deposition. Scientific Reports 11: 11-14. DOI:

Díaz-Álvarez EA, de la Barrera E, Arciga-pedraza A, Arróniz-Crespo M. 2019. Bryophyte enzymatic responses to atmospheric nitrogen deposition: A field validation for potential biomonitors. The Bryologist 122: 396-403. DOI:

Díaz-Álvarez EA, de la Barrera E, Barrios-Hernández EY, Arróniz-Crespo M. 2020. Morphophysiological screening of potential organisms for biomonitoring nitrogen deposition. Ecological Indicators 108: 105729. DOI:

Díaz-Álvarez EA, Lindig-Cisneros R, de la Barrera E. 2015. Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa. PeerJ 3: e1021. DOI:

Díaz-Álvarez EA, Lindig-Cisneros R, de la Barrera E. 2018. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations. Conservation Physiology 6: 1110-1093. DOI:

Dijkstra P, Williamson C, Menyailo O, Doucett R, Koch G, Hungate BA. 2003. Nitrogen stable isotope composition of leaves and roots of plants growing in a forest and a meadow. Isotopes in Environmental and Health Studies 39: 29-39. DOI:

Dou JX, Liu JS, Wang Y, Zhao GY. 2009. Ecophysiological responses of Calamagrostis angustifolia to nitrogen deposition. Wetland Science 7: 40–46.

Downs MR, Nadelhoffer KJ, Melillo JM, Aber JD. 1993. Foliar and fine root nitrate reductase activity in seedlings of four forest tree species in relation to nitrogen availability. Trees 7: 233-236. DOI:

Du K, Gong Q, Lin Y, Wu C, Hong W, Li J. 2015. Responses of nitrogen and phosphorus contents in seedlings of Eucalyptus urophylla ×E. Grandis and Cunninghamia lanceolata to simulated nitrogen-sulfur depositions. Journal of Plant Resources and Environment 4: 28-37.

Du E, Liu X, Fang J. 2014. Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss Rhytidium rugosum in a boreal forest in Northeast China. Environmental Pollution 188: 166-171. DOI:

Farrer EC, Herman DJ, Franzova E, Pham T, Suding KN. 2013. Nitrogen deposition, plant carbon allocation, and soil microbes: Changing interactions due to enrichment. American Journal of Botany 100: 1458-1470. DOI:

Felix JD, Avery GB, Mead RN, Kieber RJ, Willey JD. 2016. Nitrogen content and isotopic composition of spanish moss (Tillandsia usneoides L.): Reactive nitrogen variations and source implications across an urban coastal air shed. Environmental Processes 3: 711-722. DOI:

Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs, Niinemets Ü. 2016. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant, Cell and Environment 39: 965-982. DOI:

Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ. 2003. The Nitrogen Cascade. BioScience 53: 341. DOI:[0341:TNC]2.0.CO;2

Galloway JN, Dentener F, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153-226. DOI:

Glime JM. 2017a. Water Relations: Plant Strategies. Chapt. 7-3. In: Glime JM. Bryophyte Ecology. Volume 1. Physiological Ecology. Michigan, USA: Michigan Technological University and the International Association of Bryologists. (accessed September 23, 2020)

Glime JM. 2017b. Nutrient Relations: Nitrogen. Chapt. 8-3. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Michigan, USA: Michigan Technological University and the International Association of Bryologists. (accessed June 13, 2020)

Gotelli NJ, Ellison AM. 2002. Nitrogen deposition and extinction risk in the northern pitcher plant, Sarracenia purpurea. Ecology 83: 2758-2765. DOI:[2758:NDAERI]2.0.CO;2

Gruber N, Galloway JN. 2008. An Earth-system perspective of the global nitrogen cycle. Nature 451: 293-296. DOI:

Han W, Jiang J, He Q, Huang H, Hu J, Hu S, Ni J. 2019. Effects of nitrogen deposition and liming on the early regeneration of two dominant tree species in a subtropical forest of China. Ecoscience 26: 269-277. DOI:

Harmens H, Hayes F, Sharps K, Mills G, Calatayud V. 2017. Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads. Journal of Plant Physiology 211: 42-52. DOI:

Högberg P, Johannisson C. 1993. 15N abundance of forests is correlated with losses of nitrogen. Plant and Soil 157: 147-150. DOI:

Horn KJ, Thomas RQ, Clark CM, Pardo LH, Fenn ME, Lawrence GB, Perakis SS, Smithwick EAH, Baldwin D, Braun S, Nordin A, Perry CH, Phelan JN, Schaberg PG, Clair SBS, Warby R, Watmough S. 2018. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. Plos One 13: e0205296. DOI:

INEGI [Instituto Nacional de Estadística y Geografía]. 2017. Anuario estadístico y geográfico de Michoacán de Ocampo 2017. CdMx México: Instituto Nacional de Estadística y Geografía. (accessed May 28, 2018)

Jiang Q, Tang J, Chen X, Chen J, Yang R, Hu S. 2005. Effects of simulated nitrogen deposition on weeds growth and nitrogen uptake. Chinese Journal of Applied Ecology 16: 951-5.

Jiang CL, Zhang XS. 2009. N isotopes and N cycle in the TieShanPing subtropical forest ecosystem, Southwestern China. Environmental Monitoring and Assessment 154: 301-308. DOI:

Jin X, Yang G, Tan C, Zhao C. 2015. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Scientific Reports 5: 9311. DOI:

Kronzucker HJ, Britto DT, Davenport RJ, Tester M. 2001. Ammonium toxicity and the real cost of transport. Trends in Plant Science 6: 335-337. DOI:

Lambers H, Chapin III FS, Pons TL. 2008. Plant Physiological Ecology. New Jersey, USA. Springer. ISBN: 978-0-387-78340-6

Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Poto?nik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, Van Schayck OCP, Yadama GN, Yumkella K, Zhong M. 2018. The Lancet Commission on pollution and health. The Lancet 391: 462-512. DOI:

Lee JA, Caporn SJMM. 1998. Ecological effects of atmospheric reactive nitrogen deposition on semi-natural terrestrial ecosystems. New Phytologist 139: 127-134. DOI:

Li M, Guo W, Du N, Xu Z, Guo X. 2018. Nitrogen deposition does not affect the impact of shade on Quercus acutissima seedlings. Plos One 13: e0194261. DOI:

Li W, Jin C, Guan D, Wang Q, Wang A, Yuan F, Wu J. 2015. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biology & Biochemistry 82: 112-118. DOI:

Lichtenthaler HK. 1987. Chlorolphylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382. DOI:

Litton CM, Ryan MG, Tinker DB, Knight DH. 2003. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33: 351-363. DOI:

Liu C, Guo X, Wang K, Sun Y, Li W, Liu Q, Liu Q. 2018a. Nitrogen deposition does not alleviate the adverse effects of shade on Camellia japonica (Naidong) seedlings. Plos One 13: e0201896. DOI:

Liu N, Wang J, Guo Q, Wu S, Rao X, Cai X, Lin Z. 2018b. Alterations in leaf nitrogen metabolism indicated the structural changes of subtropical forest by canopy addition of nitrogen. Ecotoxicology and Environmental Safety 160: 134-143. DOI:

Liu N, Wu S, Guo Q, Wang J, Cao C, Wang J. 2018c. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments. Science of The Total Environment 637-638: 1026-1034. DOI:

Lü L, Zhang L, Liu L, He H, Yan S, Fang H, Li Y. 2016. Effects of atmospheric nitrogen deposition on photosynthesis of dominant plant species in the Haibei alpine meadow ecosystem. Research of Environmental Sciences 29: 1617-1625.

Luo W, Li MH, Sardans J, Lü XT, Wang C, Peñuelas J, Wang Z, Han XG, Jiang Y. 2017. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution 7: 6927-6934. DOI:

Lyons KG, Maldonado-Leal BG, Owen G. 2013. Community and ecosystem effects of buffelgrass (Pennisetum ciliare) and nitrogen deposition in the Sonoran Desert. Invasive Plant Science and Management 6: 65-78. DOI:

Ma JY, Sun W, Liu XN, Chen FH. 2012. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in Northern China. Plos ONE 7: e51894. DOI:

Mao Q, Lu X, Mo H, Gundersen P, Mo J. 2018a. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of The Total Environment 610-611: 555-562. DOI:

Mao J, Xing Y, Yan G, Wang Q. 2018b. A meta-analysis of the response of terrestrial plant biomass allocation to simulated N deposition. Acta Ecologica Sinica 38: 3183-3194. DOI:

Markert BA, Breure AM, Zechmeister HG. 2003. Bioindicators & Biomonitors, Principles, Concepts and Applications. Oxford, UK. Elsevier. ISBN: 0–08–044177–7

Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51: 659-668. DOI:

McWhirter BD, Henry HAL. 2014. Successional processes and global change: tree seedling establishment in response to warming and N addition in a temperate old field. Plant Ecology 216: 17-26. DOI:

Nobel PS, de la Barrera E. 2002. Nitrogen relations for net CO2 uptake by the cultivated hemiepiphytic cactus, Hylocereus undatus. Scientia Horticulturae 96: 281-292. DOI:

Norra S, Handley LL, Berner Z, Stüben D. 2005. 13C and 15N natural abundances of urban soils and herbaceous vegetation in Karlsruhe, Germany. European Journal of Soil Science 56: 607-620. DOI:

Ochoa-Hueso R, Manrique E. 2013. Effects of nitrogen deposition on growth and physiology of Pleurochaete squarrosa (Brid.) Lindb.; A terricolous moss from mediterranean ecosystems. Water Air Soil Pollution 224: 1492. DOI:

Ochoa-Hueso R, Paradela C, Pérez-Corona ME, Manrique E. 2014. Pigment ratios of the mediterranean Bryophyte Pleurochaete squarrosa respond to simulated nitrogen deposition. In: Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Hicks WK, eds. Nitrogen Deposition, Critical Loads and Biodiversity. Dordrecht, Netherlands: Springer. pp. 207-216. ISBN: 978-94-007-7938-9

Pearce ISK, van der Wal R. 2002. Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath. Biological Conservation 104: 83-89. DOI:

Pearce ISK, Woodin SJ, van der Wal R. 2003. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytologist 160: 145-155. DOI:

Peng Y, Peng PH, Li JJ. 2016. Simulated nitrogen deposition influences the growth and competitive ability of Centaurea stoebe populations. Chinese Journal Plant Ecology 40: 679-685. DOI:

Perry LG, Blumenthal DM, Monaco TA, Paschke MW, Redente EF. 2010. Immobilizing nitrogen to control plant invasion. Oecologia 163: 13-24. DOI:

Persson LM, Arvidson A, Lannerstad M, Lindskog H, Morrissey T, Nilsson L, Noel S, Senyagwa J. 2010. Impacts of Pollution on Ecosystem Services for the Millennium Development Goals. Stockholm, Sweden. Stockholm Environment Institute. ISBN: 978-91-86125-22-6

Ricklefs RE. 2009. The Economy of Nature. New York, USA. WH Freeman and Company. ISBN-13: 978-0-716-78697-9

Rockström J, Steffen W, Noone K, Persson Å, Chapin III FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J. 2009. Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society 14: 32. DOI:

Rzedowski GC de, Rzedowski J. 2005. Flora Fanerogámica del Valle de México. Pátzcuaro, México. Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 978-607-7607-36-6

Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770-1774. DOI:

Santiago LS, Silvera K, Andrade JL, Dawson TE. 2005. El uso de isótopos estables en biología tropical. Interciencia 30: 536-542.

SEMARNAT [Secretaria del Medio Ambiente y Recursos Naturales]. 2012. Norma Oficial Mexicana NOM-156-SEMARNAT-2012, Establecimiento y operación de sistemas de monitoreo de la calidad del aire. Diario Oficial de la Federación. 16 de julio de 2012.

Shen H, Dong S, Li S, Xiao J, Han Y, Yang M, Zhang J, Gao X, Xu Y, Li Y, Zhi Y, Liu S, Dong Q, Zhou H, Yeomans JC. 2019. Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau. Environmental Pollution 251: 731-737. DOI:

Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004. Impact of nitrogen deposition on the species richness of grasslands. Science 303: 1876-1879. DOI:

Stevens CJ, Dupr C, Dorland E, Gaudnik C, Gowing DGJ, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB. 2011. The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environmental Pollution 159: 2243-2250. DOI:

Stevens CJ, Gowing DJG. 2014. Effect of nitrogen addition, form and clipping on competitive interactions between grassland species. Journal Plant Ecology 7: 222-230. DOI:

Sutton MA, Pitcairn CER, Whitfield CP. 2004. Bioindicator and biomonitoring methods for assessing the effects of atmospheric nitrogen on statutory nature conservation sites. JNCC Report No: 356. Countryside council for Wales, English Nature, joint Nature Conservation Committee and Centre for Ecology and Hydrology. (accessed November 07, 2018)

Taiz L, Zeiger E, Moller IM, Murphy A. 2014. Plant Physiology and Development. Oxford, UK. Sinauer Associates. ISBN 13: 9781605352558

Tang MH, Porder S, Lovett GM. 2012. Species differences in nitrate reductase activity are unaffected by nitrogen enrichment in northeastern US forests. Forest Ecology and Management 275: 52-59. DOI:

Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist 217: 35-53. DOI:

Throop HL, Lerdau MT. 2004. Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems 7: 109-133. DOI:

Tian Q, Liu N, Bai W, Li L, Chen J, Reich PB, Yu Q, Guo D, Smith MD, Knapp AK, Cheng W, Lu P, Gao Y, Yang A, Wang T, Li X, Wang Z, Ma Y, Han X, Zhang WH. 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology 97: 65-74. DOI:

Tian D, Pan Q, Simmons M, Chaolu H, Du B, Bai Y, Wang H, Han X. 2012. Hierarchical reproductive allocation and allometry within a perennial bunchgrass after 11 Years of Nutrient Addition. Plos ONE 7: e42833. DOI:

Tulloss EM, Cadenasso ML. 2016. The effect of nitrogen deposition on plant performance and community structure: Is it life stage specific. Plos One 11: e0156685. DOI:

Van der Maarel E. 2005. Vegetation Ecology. Oxford, UK. Blackwell Science Ltd. ISBN 0-632-05761-0

Van der Valk AG. 2009. Herbaceous Plant Ecology. Ames, USA. Springer. ISBN: 978-90-481-2797-9

Van den Berg LJL, Dorland E, Vergeer P, Hart MAC, Bobbink R, Roelofs JGM. 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist 166: 551-564. DOI:

Vibrans H. 2021. Malezas de México. CONABIO. (accessed January 15, 2021)

Vieira CR, Weber OLS, Scaramuzza JF. 2018. Ash content, carbon and C/N ratio in paricá in function of NPK fertilization. Anais da Academia Brasileira de Ciencias 90: 333-341. DOI:

Wang W, Pataki DE. 2010 Spatial patterns of plant isotope tracers in the Los Angeles urban region. Landscape Ecology 25: 35-52. DOI:

Wang M, Shi S, Lin F, Hao Z, Jiang P, Dai G. 2012. Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian Ash (Fraxinus mandshurica) seedlings in Northeastern China. Plos One 7: e30754. DOI:

Wang J, Yi X, Cui J, Chang Y, Yao D, Zhou D, Yang J, Zhou J, Chan A, Wang W, Yin X. 2019. Nonlinear effects of increasing nitrogen deposition on rice growth and heavy metal uptake in a red soil ecosystem of southeastern China. Science of the Total Environment 670: 1060-1067. DOI:

WHO [World Health Organization]. 2003. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide. EUR/03/5042688. Bon, Germany. Health Documentation Services WHO, Regional Office for Europe, Copenhagen. (accessed April 08, 2018)

Xiao HY, Wu LH, Zhu RG, Wang YL, Liu CQ. 2011. Nitrogen isotope variations in camphor (Cinnamomum Camphora) leaves of different ages in upper and lower canopies as an indicator of atmospheric nitrogen sources. Environmental Pollution 159: 363-367. DOI:

Xu W, Shang B, Xu Y, Yuan X, Dore AJ, Zhao Y, Massad RS, Feng Z. 2018. Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone. Environmental Pollution 238: 760-770. DOI:

Yeo S, Lee H, Choi S, Seol S, Jin H, Yoo C, Lim J, Kim J. 2019. Analysis of the national air pollutant emission inventory (CAPSS 2015) and the major cause of change in Republic of Korea. Asian Journal of Atmospheric Environment 13: 212-231. DOI:

Yoneyama T, Omata T, Nakata S, Yazaki J. 1991. Fractionation of nitrogen isotopes during the uptake and assimilation of ammonia1 by Plants. Plant and Cell Physiology 32: 1211-1217. DOI:

Yuan X, Shang B, Xu Y, Xin Y, Tian Y, Feng Z, Paoletti E. 2017. No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar. Science of the Total Environment 601–602: 222-229. DOI:

Zhang Y, Zhou X, Yin B, Downing A. 2016. Sensitivity of the xerophytic moss Syntrichia caninervis to prolonged simulated nitrogen deposition. Annals of Botany 117: 1153-1161. DOI:

Zhou H, Kang S, Li F, Du T, Shukla MK, Li X. 2020. Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages. Scientia Horticulturae 263: 32-41. DOI:

Zotz G, Bader MY. 2009. Epiphytic plants in a changing world global: Change effects on vascular and non-vascular epiphytes. In: Lüttge U, Beyschlag W, Büdel B, Francis D, eds. Progress in Botany 70. Berlin, Germany: Springer, pp. 147- 170. ISBN: 978-3-540-68420-6

How to Cite
Martínez, D. N., & de la Barrera, E. (2021). Physiological screening of ruderal weed biomonitors of atmospheric nitrogen deposition. Botanical Sciences, 99(3), 573-587.