Chemical composition and root morphology of five native shrub species and their influence on soil fixation

keywords: cellulose, hemicellulose, lignin, native species, root morphology


Background: The use of vegetation is a recurrent practice for fixing soil and will depend on the characteristics of root and the root system.

Question and hypothesis: Root chemical composition is different among species, and it is influenced by root diameter. Morphological classification is different among species.

Studied Species: Broussonetia papyrifera, Decatropis bicolor, Dalea hospes, Caesalpinia mexicana and Zanthoxylum fagara.

Study area and dates: Submontane scrub Chipinque Ecological Park, San Pedro Garza García, Nuevo Leon. June to November 2019.

Methods: Roots by species were classified into three diameter categories (I 0.1-2.9 mm; II 3-5.9 mm; III 6-9.9 mm). Prior to chemical analysis, the bark was removed from the roots. The chemical composition was determined by sequential fractionation of the cell wall. Root morphology was classified by comparison with established methodologies.

Results: A decreasing relationship was found in the hemicellulose and cellulose content with the increase in the root diameter, in all the species they were higher in the diametric categories I (0.1-2.9 mm). The highest lignin contents were found in category III (6-9.9 mm). The order of importance in terms of cellulose content for soil protection was: Dalea hospes > Broussonetia papyrifera > Caesalpinia mexicana > Decatropis bicolor > Zanthoxylum fagara.

Conclusions: Based on root chemical composition and root system morphology, a revegetation method is proposed for soil fixation, Dalea hospes and Decatropis bicolor at the top of the slope, Zanthoxylum fagara and Caesalpinia mexicana in the middle and Broussonetia papyrifera at the foot of hillside.


Download data is not yet available.
Chemical composition and root morphology of five native shrub species and their influence on soil fixation


Alanís-Rodríguez E, Jiménez-Pérez J, Pando-Moreno M, Aguirre-Calderón O, Treviño-Garza E, Canizales-Velázquez P. 2010. Analysis of the arboreal diversity in restaurated after-fire areas in the Ecological Park Chipinque, Mexico. Acta Biológica Colombiana 5: 309-324.

Alanís GM, González M, Guzmán YG, Cano G. 1995. Flora Representativa de Chipinque: árboles y arbustos, 1ª parte. Universidad Autónoma de Nuevo León. 1-40

Alvarado V, Bermúdez-Rojas T, Romero-Vargas M, Piedra-Castro L. 2014. Native plants for erosion control in urban river slopes. Spanish Journal of Soil Science 4: 99-109. DOI:

Barros J, Serk H, Granlund I, Pesquet E. 2015. The cell biology of lignification in higher plants. Annals of Botany 115: 1053-1074. DOI:

Brendel O, Iannetta M, Stewart D. 2000. A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis 11: 7-10. DOI:<7::AID-PCA488>3.0.CO;2-U

Carpita NC, Ralph J, McCann MC. 2015. The cell wall. In: Buchanan B, Gruissem W, Jones R. eds. Biochemistry and Molecular Biology of Plants, Maryland: American Society of Plant Biologists, Rockville, pp. 45–110. ISBN: 978-0-470-71421-8

Chapa-Guerrero JR, Méndez-Delgado S, Chávez-Cabello G, Chapa-Arce RI, Ibarra-Martínez SE. 2016. Movimientos en masa, un riesgo geológico latente en el área metropolitana de Monterrey, N.L., México. Ciencia UANL 19: 41-45.

Chuncho G, Chunco C, Aguirre Z. 2019. Anatomía y morfología vegetal. Loja, Ecuador: Universidad Nacional de Loja. ISBN-978-9978-355-57-2

Danjon F, Barker D, Drexhage M, Stokes A. 2008. Using three-dimensional plant root architecture in models of shallow-slope stability. Annals of Botany 101: 1281-1293. DOI:

Dupuy L, Fourcaud T, Stokes A. 2007. A numerical investigation into the influence of soil type and root architecture on tree anchorage. In: Stokes A, Spanos I, Norris JE, Cammeraat E. eds. Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. Dordrecht: Springer. DOI:

Estrada-Castillón AE. 1998. Ecología del matorral submontano en el estado de Nuevo León, México. PhD Thesis. Universidad Autónoma de Chihuahua.

Faisal A. 2010. Use of vegetation for slope protection: Root mechanical properties of some tropical plants. International Journal of Physical Sciences 5: 496-506.

Flora of North America Editorial Committee. 1993. Flora of North America: Magnoliophyta: Commelinidae (in Part), Cyperaceae (Vol. 23). New York, USA: Oxford University Press. ISBN 978-0-19-515207-4

García-Bastida M. 2013. Aspectos ecológicos de Gerrhonotus infernalis (Sauria: Anguidae) en el Parque Ecológico Chipinque, San Pedro Garza García, Nuevo León, México. PhD. Thesis. Universidad Autónoma de Nuevo León.

García E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). México: Instituto de Geografía, Universidad Nacional Autónoma de México. ISBN: 970-32-1010-4

Genet M, Li M, Luo T, Vidal A, Stokes A. 2010. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei. Annals of Botany 107: 311-320. DOI:

Genet M, Stokes A, Salin F, Mickovski S, Fourcaud T, Dumail J, Van Beek R. 2005. The influence of cellulose content on tensile strength in tree roots. Plant and Soil 278: 1-9. DOI:

Genet M, Stokes A, Fourcaud T, Cai X, Lu Y. 2006. Soil fixation by tree roots: Changes in root reinforcement parameters with age in Cryptomeria japonica D. Don plantations. In: Marui H. ed. INTERPRAEVENT 2006: Disaster Mitigation of Debris Flows, Slope Failures and Landslides. Tokyo, Japan: Universal Academy Press. pp. 535-542. ISBN: 4-946443-98-3

Gindl W, Grabner M, Wimmer R. 2001. Effects of altitude on tracheid differentiation and lignification of Norway Spruce. Canadian Journal of Botany 79: 815-821. DOI:

Hales T, Ford C, Hwang T, Vose J, Band L. 2009. Topographic and ecologic controls on root reinforcement. Journal of Geophysical Research 114: 1-17. DOI:

Höfte H, Voxeur A. 2017. Plant cell walls. Current Biology 27: R865-R870. DOI:

Klauditz W, Marschall A, Ginzel W. 1947. Zur Technologie verholzter pflanzlicher Zellwände. Holzforschung 4: 98-103. DOI:

Reubens B, Poesen J, Danjon F, Geudens G, Muys B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 21: 385-402. DOI:

Saifuddin M, Osman N, Rahman M, Boyce A. 2015. Soil reinforcement capability of two legume species from plant morphological traits and mechanical properties. Current Science 108: 1340-1347.

Sánchez-Castillo L, Kubota T, Cantú-Silva I, Yánez-Díaz M, Hasnawir, Pequeño-Ledezma M. 2017. Comparisons of the root mechanical properties of three native Mexican tree species for soil bioengineering practices. Botanical Sciences 95: 259-269. DOI:

Scippa G, Michele M, Di lorio A, Costa A, Lasserre B, Chiantane D. 2006. The response of Spartium junceum roots to slope: anchorage and gene factors. Annals of Botany 97: 857-866. DOI:

Segura F, Echeverri R, Ll A, CP, Mejía AI. 2007. Descripción y discusión acerca de los métodos de análisis de fibra y del valor nutricional de forrajes y alimentos para animales. Vitae 14: 72-81.

Stokes A, Atger C, Bengough A, Fourcaud T, Sidle R. 2009. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil 324: 1-30. DOI:

Stokes A, Douglas GB, Fourcaud T, Giadrossich F, Gillies C, Hubble T, Kim JH, Loades KW, Mao Z, Mclvor IR, Mickovski SB, Mitchell S, Osman N, Phillips C, Poesen J, Polster D, Preti F, Raymond P, Rey F, Schwarz M, Walker LR. 2014. Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners. Plant and Soil 377: 1-23. DOI:

Stokes A, Norris JE, Van Beek LPH, Bogaard T, Cammeraat E, Mickovski SB, Jenner A, di Iorio A, Fourcaud T. 2008. How vegetation reinforces soil on slopes, Slope stability and erosion control ecotechnological solutions. In: Norris JE, Stokes A, Mickovski SB, Cammeraat E, van Beek R, Nicoll BC, Achim A. eds. Slope Stability and Erosion Control: Ecotechnological Solutions. Dordrecht: Springer Netherlands. pp. 65-118. DOI:

Styczen ME, Morgan RPC.1994. Engineering properties of vegetation. In: Morgan RPC, Rickson RJ. eds. Slope Stabilization and Erosion Control: A Bioengineering Approach. London, UK: Taylor y Francis. pp. 5-58. DOI:

Thomas F, Molitor F, Werner W. 2014. Lignin and cellulose concentrations in roots of Douglas fir and European beech of different diameter classes and soil depths. Trees 28: 309-315. DOI:

Valenciaga D, Chongo B. 2004. La pared celular. Influencia de su naturaleza en la degradación microbiana ruminal de los forrajes. Revista Cubana de Ciencia Agrícola 38: 343-350.

Van Soest PV, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.DOI:

Yang Y, Li N, Zhang Q. 2016. Effect of root moisture content and diameter on root tensile properties. Plos One 11: 1-17. DOI:

Zavala-González R, Cantú-Silva I, Sánchez-Castillo L, González H, Kubota T, Hasnawir. 2019. Ten native tree species for potential use in soil bioengineering in northeastern Mexico. Botanical Sciences 97: 291-300. DOI:

Zavaleta-Mejía E, Lagunes-Fortiz E. 2016. Función de la lignina en la interacción planta-nematodos endoparásitos sedentarios. Revista Mexicana de Fitopatología 34: 43-63. DOI:

How to Cite
Fernández-Villarreal, B., Zavala-González, R., Cantú-Silva, I., & González-Rodríguez, H. (2021). Chemical composition and root morphology of five native shrub species and their influence on soil fixation. Botanical Sciences, 100(1), 28-41.