Seasonal dynamic of arbuscular mycorrhizae and endophytic dark septate fungi in association with roots of Solanum elaeagnifolium Cav.

keywords: chihuahuan desert, seasonal of the year, silver nightshade, symbiosis, trypan blue, weed

Abstract

Background: The silver nightshade is associated for endophytic dark septate fungi (HOS) and arbuscular mycorrhiza (MA) in tropical ecosystems, but their colonization has not been studied in each phenological stage along the seasons of the year in an arid urban zone.

Question: Which fungal structures occurs simultaneously and are relatedness with each growth stage of the silver nightshade?

Species study: Solanum elaeagnifolium

Study site and years of study: Juarez City, Chihuahua, Mexico, 2014

Method: The roots were treated with a dual stained of trypan blue and sudan IV to distinguish the mycorrhizal colonization structures of both fungi in the silver nightshade life cycle during the four seasons of the year. The mean of fungal structures of root length with their total colonization per millimeter was evaluated.

Results: The simultaneous colonization of the fungi was in all the seasons which morphological diversity was related to the host phenology. The mean of the total colonization for their structure of both fungi (HOS: 64.2 ± 7.2 y HMA: 31.5 ± 3.2 per mm of root length) represented the major significance of root association in spring. The hyaline hyphae as the active structures of the HOS and the arbuscules of the HMA were consistent in the seasons of the year.

Conclusions: This is the first report to show the mycorrhizal colonization ‘Arum’ type and describe the co-occurrence of the HMA and the HOS in relation with the silver nightshade phenology per seasonal year in an urban area of the Chihuahuan Desert.

Downloads

Download data is not yet available.
Seasonal dynamic of arbuscular mycorrhizae and endophytic dark septate fungi in association with roots of <em>Solanum elaeagnifolium</em> Cav.

References

Ali AH, Radwan U, El-Zayat S, El-Sayed MA. 2018. Desert plant-fungal endophytic association: The beneficial aspects to their hosts. Biological Forum-An International Journal 10: 138–145.
Armenta –Calderon AD, Moreno-Salazar SF, Furrazola-Gomez E, Ochoa-Meza A. 2019. Arbuscular mycorrhiza, carbon content and soil aggregation in Sonoran Desert plants. SJSS Spanish Journal of Soil Science 9: 42-53. https://doi.org/10.3232/SJSS.2019.V9.N1.03
Aslani F, Juraimi AS, Ahmad-Hamdani M S, Alam M A, Hasan MM, Hashemi FSG, Bahram M. 2019. The role of arbuscular mycorrhizal fungi in plant invasion trajectory. Plant and Soil 441(1–2). DOI: https://doi.org/10.1007/s11104-019-04127-5
Awaydul A, Zhu W, Yuan Y, Xiao J, Hu H, Chen X, Koide RT, Cheng L. 2019. Common mycorrhizal networks influence the distribution of mineral nutrients between an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza 29: 29-38
Barrow JR. 2003. Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern U.S.A. rangelands. Mycorrhiza 13:239 - 247. DOI: 10.1007/s00572-003-0222-0
Barrow JR, Osuna P. 2002. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal Arid Environment 51: 449-459
Barrow JR, Aaltonen RE. 2001. Evaluation of the internal colonization of Atriplex canescens (pursh) nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11: 199–205. DOI: https://doi.org/10.1007/s005720100111
Barrow JR, Havstad K M, Hubstenberger J, McCaslin BD. 1997a. Fungal root endophytes in fourwing saltbush, Atriplex canescens, on arid rangelands of Southwestern USA. Arid Soil Research and Rehabilitation 11: 177-185. DOI:: 10.1080/15324989709381470
Barrow JR, Havstad KM, Hubstenberger J, McCaslin BD. 1997b. Seed-borne fungal endophytes on fourwing saltbush, Atriplex canescens. Arid Soil Research and Rehabilitation 11: 307–314. DOI: https://doi.org/10.1080/15324989709381484
Bertolini V, Montaño NM, Salazar-Ortuño B L, Chimal-Sánchez E, Varela L. 2020. Diversidad de hongos micorrizógenos arbusculares en plantaciones de café (Coffea arabica) del volcán Tacaná, Chiapas, México. Acta Botanica Mexicana 127. DOI: https://doi.org/10.21829/abm127.2020.1602
Braun K, Romero J, Liddell C, Creamer R. 2003. Production of swainsonine by fungal endophytes of locoweed. Mycological Research 107:980-988.
Cardoso IM, Kuyper TW. 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment, 116: 72–84. https://doi.org/10.1016/J.AGEE.2006.03.011
Chowa?ski S, Adamski Z, Marciniak P, Rosi?ski G, Büyükgüzel E, Büyükgüzel K, Falabella P, Scrano L, Ventrella E, Lelario F, Bufo SA. 2016. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins 8:1–28. DOI: https://doi.org/10.3390/toxins8030060
De Oliveira TC, Uehara HM, Da Silva L D, Tavares GG, Santana LR, Cabral JSR, Souchie EL, Mendes GC. 2019. Produtividade da soja em associação ao fungo micorrízico arbuscular Rhizophagus clarus cultivada em condições de campo. Revista de Ciências Agroveterinárias, 18:530–535. DOI: https://doi.org/10.5965/223811711832019530
Di Barbaro G, Andrada H, González- Basso V, Alurralde AL, Del Valle E, Brandán de Weht C. 2017. Micorrizas arbusculares y hongos septados oscuros nativos en topinambur (Helianthus tuberosus L.) en Catamarca, Argentina. Revista de Ciencias Agrícolas, 34: 98–106. DOI: https://doi.org/10.22267/rcia.173402.75
Fisher JB, Jayachandran K. 2005. Presence of arbuscular mycorrhizal fungi in South Florida native plants. Mycorrhiza, 15: 580–588. DOI: https://doi.org/10.1007/s00572-005-0367-0
Fonseca HMAC, Ferreira JIL, Berbara RLL, Zatorre, N. P. 2009. Dominance of Paris-Type Morphology on Mycothallus of Lunularia Cruciata. Brazilian Journal of Microbiology 40: 96–101. DOI: http://www.scielo.br/scielo.php?pid=S1517-83822009000100016&script=sci_arttext&tlng=en
Gallo GG. 1987. Plantas tóxicas para el ganado en el Cono Sur de América. Hemisferio Sur. https://books.google.com/books?id=lu5JAAAAYAAJ
Gasoni L, De Gurfinkel BS. 1997. The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth. Mycological Research 101: 867–870. DOI: https://doi.org/10.1017/S0953756296003462
George E, Haussler KU, Vetterlein D, Gorgus E. Marschner H. 1992. Water and nutrient translocation by hyphae of Glomus mosseae. Canadian Journal of Botany 70: 2130-2137. doi.org/10.1139/b92-265
Hereme R, Morales-Navarro S, Ballesteros G, Barrera A, Ramos P, Gundel P E, Molina-Montenegro MA. 2020. Fungal endophytes exert positive effects on Colobanthus quitensis under water stress but neutral under a projected climate change scenario in Antarctica. Frontiers in Microbiology, 11: 1–12. DOI: https://doi.org/10.3389/fmicb.2020.00264
Jumpponen A, Trappe JM. 1998. Dark septate root endophytes: a review with special reference to facultative biotrophic symbiosis. New Phytologist 140:295 - 310. DOI: 10.1046/j.1469-8137.1998.00265.x.
Khare CP. 2007. Solanum elaeagnifolium Cav. Indian Medicinal Plants 1890: 1–1. DOI: https://doi.org/10.1007/978-0-387-70638-2_1515
Lucero M E, Barrow JR, Osuna P, Reyes I, Duke SE. 2008. Enhancing native grass productivity by co-cultivating with endophyte-laden calli. Rangeland Ecology and Management 61: 124–130. DOI: https://doi.org/10.2111/06-144R3.1
Lucero ME, Unc A, Cooke P, Dowd S, Sun, S. 2011. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS ONE 6(3). DOI: https://doi.org/10.1371/journal.pone.0017693
Maiti P, Mathew R. 1967. Rich sources of solasodine. Current Science, 36: 126-126. Retrieved April 26, 2020, from www.jstor.org/stable/24067033
Mandyam K, Jumpponen A. 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology 53: 173–189. DOI: https://doi.org/10.3114/sim.53.1.173
Mekki M. 2007. Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.) Bull OEPP 37:114–118. https://doi.org/10.1111/j.1365-2338.2007.01094.x
Muthukumar T, Sathya R. 2017. Endorhizal Fungal Association and Colonization Patterns in Solanaceae. Polish Botanical Journal 62: 287–299. DOI: https://doi.org/10.1515/pbj-2017-0016
Newsham KK, Fitter AH Watkinson AR. 1995. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology 83: 991-1000. doi:10.2307/2261180
Ortas I. 2018. Role of mycorrhizae on mineral nutrition of fruit trees. Acta Horticulturae. 1217:271-284. DOI: https://doi.org/10.17660/ActaHortic.2018.1217.34
Petigrosso LR, Vignolio OR, Damiano I, Echeverria MM, Colabelli MN, Gundel PE. 2019. Eradication of the fungus epichloë coenophiala from Schedonorus arundinaceus (Tall fescue) seeds by interrupting the vertical transmission process. Ecologia Austral 29: 55–62. DOI: https://doi.org/10.25260/ea.19.29.1.0.764
Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1):158-IN18. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3
Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach K J, Lowrey T, Natvig DO. 2008. Novel root fungal consortium associated with a dominant desert grass. Applied and Environmental Microbiology 74: 2805–2813. DOI: https://doi.org/10.1128/AEM.02769-07
Pryor BM, Creamer R, Shoemaker RA, McLain-Romero J, Hambleton S. 2009. Undifilum, a new genus for endophytic Embellisia oxytropis and parasitic Helminthosporium bornmuelleri on legumes. Botany, 87: 178–194. DOI: https://doi.org/10.1139/B08-130
Quiroga G, Erice G, Aroca R, Zamarreño ÁM, García-Mina JM, Ruiz-Lozano JM. 2020. Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affected by indole-acetic acid (IAA) application. Journal of Plant Physiology 246–247, 153115. DOI: https://doi.org/10.1016/J.JPLPH.2020.153115
Ray P, Abraham PE, Guo Y, Giannone RJ, Engle N, Yang ZK, Jacobson D, Hettich RL, Tschaplinski TJ, Craven KD. 2019. Scavenging organic nitrogen and remodelling lipid metabolism are key survival strategies adopted by the endophytic fungi, Serendipita vermifera and Serendipita bescii to alleviate nitrogen and phosphorous starvation in vitro. Environmental Microbiology Reports 11: 548–557. DOI: https://doi.org/10.1111/1758-2229.12757
Reyes-Jaramillo I, Montaño NN, Silva-González E. 2020. Hongos endófitos septados, pero no los micorrízicos arbusculares afectan el crecimiento temprano de Quercus hintonii, un encino endémico del estado de México. Botanical Sciences 98: 453-463. DOI: 10.17129/botsci.2505
Saif SR, Ali I, Zaidi A. 1977. Arbuscular mycorrhizae in plants and endogonaceous spores in the soil of northern areas of Pakistan. Pakistan Journal of Botany 9:129-148.
Saikkonen K, Young CA, Helander M, Schardl CL. 2017. Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Molecular Biology 90: 665–675. DOI: https://doi.org/10.1007/s11103-015-0399-6
Singleton JJ, Mangat PK, Shim J, Vavra C, Coldren C, Angeles-Shim RB. 2020. Cross-species transferability of Solanum spp. DNA markers and their application in assessing genetic variation in silverleaf nightshade (Solanum elaeagnifolium) populations from Texas, USA. Weed Science 68: 396–404. DOI: https://doi.org/10.1017/wsc.2020.25
Smith SE, Read DJ. 1997. Mycorrhizal Symbiosis. 2nd Edition, Academic Press, London. 605 p
Smith SE, Read D. 2008. Colonization of roots and anatomy of arbuscular mycorrhizas. Mycorrhizal Symbiosis 10–90. DOI: https://doi.org/10.1016/B978-012370526-6.50004-0
Tahtamouni ME, Khresat S, Lucero M, Sigala J, Unc, A. 2016. Diversity of endophytes across the soil-plant continuum for Atriplex spp. in arid environments. Journal of Arid Land 8: 241–253. DOI: https://doi.org/10.1007/s40333-015-0061-9
Urcelay C, Tecco P, Chiarini F. 2005. Micorrizas arbusculares del tipo “Arum” y “Paris” y endófitos radicales septados oscuros en Miconia ioneura y Tibouchina paratropica (Melastomataceae). Boletín de La Sociedad Argentina de Botánica, 40: 151–155.
Vázquez de Aldana B, Gundel PE, García -Criado B, García- Ciudad A, García- Sánchez A. 2014. Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass Forage Sci, 69: 462-469. doi:10.1111/gfs.12049
Vigna MR. Fernández OA, Brevedan RE. 1981. Biología y control de Solanum elaeagnifolium Cav. revisión bibliográfica. Rev. Facultad de Agronomia 2: 79-89. http://ri.agro.uba.ar/files/download/revista/facultadagronomia/1981vignamr.pdf
Xia T, Wang Y, He Y, Wu C, Shen K, Tan Q, Kan L, Guo Y, Wu B, Han X. 2020. An invasive plant experiences greater benefits of root morphology from enhancing nutrient competition associated with arbuscular mycorrhizae in kart soils than a native plant. PLOS ONE 15: 1-18. DOI.org/10.137/journal.pone.00234410
Yu T, Nassuth A, Petersen RL. 2001. Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Canadian Journal of Microbiology 47:741–753. https://doi.org/10.1139/w01-065
Zuo Y, Su F, He X, Li M. 2020. Colonization by dark septate endophytes improves the growth of Hedysarum scoparium under multiple inoculum levels. Symbiosis. DOI: https://doi.org/10.1007/s13199-020-00713-9
Published
2021-02-14
How to Cite
Osuna Avila, P., Flores Margez, J. P., & Corral Díaz, B. (2021). Seasonal dynamic of arbuscular mycorrhizae and endophytic dark septate fungi in association with roots of Solanum elaeagnifolium Cav. Botanical Sciences, 99(2), 291-304. https://doi.org/10.17129/botsci.2769
Section
ECOLOGY / ECOLOGÍA