Associations between reproductive characteristics and abundance in Gymnocalycium quehlianum (Cactaceae) along an altitudinal gradient

keywords: altitudinal gradients, Cactaceae, reproductive traits, Córdoba Mountains, globose cacti, seedling traits

Abstract

Background: Even though species can have wide altitudinal ranges, little is known about how their abundance varies in these gradients and the variables associated with this variation.

Hypothesis: There will be an association between abundance and reproductive characteristics, such as seed weight, germination, and the size and shape of seedlings along an altitude gradient.

Study species: Gymnocalycium quehlianum

Study site and date: Sierras Chicas, Córdoba Province, Argentina. 2015-2016.

Methods: The density and its population structure (size classes) were measured in three sites of G. quehlianum distribution along an altitude gradient, at 615, 948, and 1,257 m asl Seeds were weighted, the percentage and germination speed were evaluated, and the length and diameter of the seedlings were measured.

Results: The weight of the seed was lower in the population at intermediate altitude, while the percentage and mean germination time did not vary significantly between altitudes. The seedling size was smaller in the intermediate population while the seedlings shape of the extreme populations presented a more elongated shape.

Conclusions: There is no relationship between the population abundance along the altitudinal gradient and the variables analyzed. Some variables did not show differences along the gradient, such as the germination percentage and the mean germination time, while other variables such as seed mass and the shape and size of the seedlings did contrary to expectations.

Downloads

Download data is not yet available.

Author Biography

Diego E. Gurvich, Instituto Multidisciplinario de Biología Vegetal, CONICET, FCEF y N, Universidad Nacionalde Córdoba.

Instituto Multidisciplinario de Biología Vegetal, CONICET, FCEF y N, Universidad Nacional de Córdoba.

Researcher

Associations between reproductive characteristics and abundance in <em>Gymnocalycium quehlianum</em> (Cactaceae) along an altitudinal gradient

References

Arroyo-Cosultchi G, Arias S, López-Mata L, Terrazas T. 2017. Morphological plasticity of an endemic widespread columnar cactus and its congener. Brazilian Journal of Botany 40:1029-1040. DOI: https://doi.org/10.1007/s40415-017-0399-7

Balogh BR, Toft CA. 2007. Effect of seed size on seedling performance in a long-lived desert perennial shrub (Ericameria nauseosa: Asteraceae). International Journal of Plant Science 168:1027-1033. DOI: https://doi.org/10.1086/518942

Baskin C, Baskin JM. 2001. A geographical perspective on germination ecology of tropical and subtropical zones. In: Baskin C, Baskin JM, eds. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination. San Diego: Academic Press, pp. 293-329. DOI: https://doi.org/10.1111/j.1756-1051.2000.tb01610.x

Bauk K, Pérez-Sánchez R, Zeballos SR, Las Peñas ML, Flores J, Gurvich DE. 2015. Are seed mass and seedling size and shape related to altitude? Evidence in Gymnocalycium monvillei (Cactaceae). Botany 93: 529-533. DOI: https://doi.org/10.1139/cjb-2015-0026

Bauk K, Flores J, Ferrero C, Pérez-Sánchez R, Las Peñas ML, Gurvich DE. 2017. Germination characteristics of Gymnocalycium monvillei (Cactaceae) along its entire altitudinal range. Botany 95: 419-428. DOI: https://doi.org/10.1139/cjb-2016-0154

Charles G. 2009. Gymnocalycium in habitat and culture. England, Stamford, Ketton: G. Charles. ISBN: 9780956220608

De Fina A. 1992. Aptitud Agroclimática de la República Argentina. Argentina, Buenos Aires: Academia Nacional de Agronomía y Veterinaria. ISBN 950-0068-5

Demaio PH, Barfuss MH, Kiesling R, Till W, Chiapella JO. 2011. Molecular phylogeny of Gymnocalycium (Cactaceae): assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. American Journal of Botany 98: 1841-1854. DOI: https://doi.org/10.3732/ajb.1100054

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. 2015. InfoStat Versión 2015. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Ellis RH, Roberts EH. 1980. Towards a rational basis for testing seed quality. In: Hebblethwaite PD, eds. Seed Production. England, London: Butterworths. pp. 605-635. ISBN 92-9043-279-9.

Fernández-Pascual E, Mattana E, Pritchard HW. 2019. Seeds of future past: climate change and the thermal memory of plant reproductive traits. Biological Reviews 94: 439-456. DOI: http://doi.org/10.1111/brv.12461

Giorgis MA, Cingolani AM, Gurvich DE. 2015. Flowering phenology, fruit set and seed mass-number trade-off of five co-existing Gymnocalycium (Cactaceae) species from Córdoba Mountains, Argentina. The Journal Torrey Botanical Society 142: 220-230. DOI: https://doi.org/10.3159/TORREY-D-14-00017.1

Giorgis MA, Cingolani AM, Gurvich DE, Tecco P, Chiapella J, Chiarini F, Cabido M. 2017. Changes in floristic composition and physiognomy are decoupled along altitudinal gradients in central Argentina. Applied Vegetation Science 20: 558-571. DOI: https://doi.org/10.1111/avsc.12324

Godínez-Álvarez H, Valverde T, Ortega-Baes P. 2003. Demographic trends in the Cactaceae. The Botanical Review 69: 173-201.

Goettsch B, Hilton-Taylor C, Cruz Piñon G, Duffy JP, Frances A, Hernández HM, Inger R, Pollock C, Schipper J, Superina M, Taylor NP, Tognelli M, Abba AM, Arias S, Arreola-Nava HJ, Baker MA, Bárcenas RT, Barrios D, Braun P, Butterworth CA, Búrquez A, Caceres F, Chazaro-Basañez M, Corral-Díaz R, del Valle Perea M, Demaio PH, Duarte de Barros WA, Durán R, Faúndez Yancas L, Felger RS, Fitz-Maurice B, Fitz-Maurice WA, Gann G, Gómez-Hinostrosa C, Gonzales-Torres LR, Griffith MP, Guerrero PC, Hammel B, Heil KD, Hernández-Oria JO, Hoffmann M, Ishihara MI, Kiesling R, Larocca J, Luis León-de la Luz JL, Loaiza S. CR, Lowry M, Machado MC, Majure LC, Martínez Ávalos JG, Martorell C, Maschinski J, Méndez E, Mittermeier RA, Nassar JM, Negrón-Ortiz V, Oakley LJ, Ortega-Baes P, Pin Ferreira AB, Pinkava DJ, Porter JM, Puente-Martinez R, Roque Gamarra J, Saldivia Pérez P, Sánchez Martínez E, Smith M, Sotomayor M. del C. JM, Stuart SN, Tapia Muñoz JL, Terrazas T, Terry M, Trevisson M, Valverde T, Van Devender TR, Véliz-Pérez ME, Walter HE,. Wyatt SA, Zappi D, Zavala-Hurtado JA, Gaston KJ. 2015. High proportion of cactus species threatened with extinction. Nature Plants 1: 1-7. DOI: https://doi.org/10.1038/nplants.2015.142

Gong H, Yu T, Zhang X, Zhang P, Han J, Gao J. 2019. Effects of boundary constraints and climatic factors on plant diversity along an altitudinal gradient. Global Ecology and Conservation 19: e00671. DOI: https://doi.org/10.1016/j.gecco.2019.e00671

Guerrero PC, Durán AP, Walter HE. 2011. Latitudinal and altitudinal patterns of the endemic cacti from Atacama desert to Mediterranean Chile. Journal of Arid Environments 75: 991-997. DOI: https://doi.org/10.1016/j.jaridenv.2011.04.036

Gurvich DE, Demaio P, Giorgis MA. 2006. The diverse globose cacti community of the Argentina’s Sierras Chicas: ecology and conservation. Cactus and Succulent Journal 78: 224-230. DOI: https://doi.org/10.2985/0007-9367(2006)78[224:TDGCCO]2.0.CO;2

Gurvich DE, Funes G, Giorgis MA, Demaio P. 2008. Germination characteristics of four Argentinean endemics Gymnocalycium (Cactaceae) species with different flowering phenologies. Natural Areas Journal 28: 104-108. DOI: https://doi.org/10.3375/0885-8608(2008)28[104:GCOFAE]2.0.CO;2

Gurvich DE, Lorenzati MA, Sosa Pivatto M, Bauk K, Barroso FL. 2021. Effects of long-term seed storage on germination of 13 cacti species from Central Argentina. Journal of Arid Environments 185: 104382. DOI: https://doi.org/10.1016/j.jaridenv.2020.104382

Gurvich DE, Zeballos SR, Demaio P. 2014. Diversity and composition of cactus species along an altitudinal gradient in the Sierras del Norte Mountains (Córdoba, Argentina). South African Journal of Botany 93: 142-147. DOI: https://doi.org/10.1016/j.sajb.2014.03.018

Hicks D, Mauchamp A. 2000. Population structure and growth patterns of Opuntia echios var. gigantea along an elevational gradient in the Galápagos Islands. Biotropica 32: 235-243. DOI: https://doi.org/10.1111/j.1744-7429.2000.tb00466.x

Illoldi-Rangel P, Ciarleglio M, Sheinvar L, Linaje M, Sánchez-Cordero V, Sarkar S. 2012. Opuntia in México: Identifying priority areas for conserving biodiversity in a multi-use landscape. Plos One 7: e36650. DOI: https://doi.org/10.1371/journal.pone.0036650

Kempel A, Chrobock T, Fischer M, Rohr RP, Van Kleunen M. 2013. Determinants of plant establishment success in a multispecies introduction experiment with native and alien species. Proceedings of the National Academy of Sciences 110: 12727-12732. DOI: https://doi.org/10.1073/pnas.1300481110

Kiesling R, Ferrari O. 2005. 100 Cactus Argentinos. Buenos Aires: Editorial Albatros. ISBN: 9789502411088.

Körner C, Paulsen C, Spehn EM. 2011. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Botany 121: 73-78. DOI: https://doi.org/10.1007/s00035-011-0094-4

le Roux PC, McGeoch MA. 2004. The use of size as an estimator of age in the subantarctic cushion plant, Azorella selago (Apiaceae). Arctic, Antarctic, and Alpine Research, 36: 509-517. DOI: https://doi.org/10.1657/1523-0430(2004)36[509:TUOSAA]2.0.CO;2

Leishman MR, Wright IJ, Moles AT, Westoby M. 2000. The evolutionary ecology of seed size. In: Fenner M, ed. Seeds: The Ecology of Regeneration in Plant Communities. England,Walingford: CABI Publishing, pp. 31-57. ISBN: 0 85199 4326

Lönnberg K, Eriksson O. 2013 Rules of seed size game: contests between large-seeded and small-seeded species. Oikos 122: 1080-1084. DOI: https://doi.org/10.1111/j.1600-0706.2012.00249.x

Lynn JS, Kazenel MR, Kivlin SN, Rudgers JA. 2019. Context?dependent biotic interactions predict plant abundance across altitudinal environmental gradients. Ecography 42: 1600-1612. DOI: https://doi.org/10.1111/ecog.04421

Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, Bever JD. 2010. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466: 752-755. DOI: https://doi.org/10.1038/nature09273

Marcora P, Hensen I, Renison D, Seltmann P, Wesche K. 2008. The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Diversity and Distributions 14: 630-636. DOI: https://doi.org/10.1111/j.1472-4642.2007.00455.x

Martino PA, Bauk K, Ferrero MC, Gurvich DE, Las Peñas ML. 2018. Ecological significance of determinate primary root growth: inter-and intra-specific differences in two species of Gymnocalycium (Cactaceae) along elevation gradients. Flora 248: 70-75. DOI: https://doi.org/10.1016/j.flora.2018.09.001

Norden N, Daws ML, Antoine C, Gonzalez MA, Garwood NC, Chave J. 2009. The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology 23: 203-210. DOI: https://doi.org/10.1111/j.1365-2435.2008.01477.x

Ortega-Baes P, Godínez-Álvarez H. 2006. Global diversity and conservation priorities in the Cactaceae. Biodiversity and Conservation 15: 817-827. DOI: https://doi.org/10.1007/s10531-004-1461-x

Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C. 2015. Assessing species vulnerability to climate change. Nature Climate Change 5: 215-224. DOI: https://doi.org/10.1038/nclimate2448

Pavón NP, Hernández?Trejo H, Rico?Gray V. 2000. Distribution of plant life forms along an altitudinal gradient in the semi?arid valley of Zapotitlán, Mexico. Journal of Vegetation Science, 11: 39-42. DOI: https://doi.org/10.2307/3236773

Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausasv JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. 2013. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. DOI: https://doi.org/10.1071/BT12225

Perrigo A, Hoorn C, Antonelli A. 2020.Why mountains matter for biodiversity. Journal of Biogeography 47: 315-325. DOI: https://doi.org/10.1111/jbi.13731

Polechová J, Storch D. 2008. Ecological niche. England, Oxford: Encyclopedia of ecology, pp. 1088-1092. ISBN: 9780444637680

Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Moureta-Holme A, Nogues-Bravo D, Whittaker RJ, Fjeldsa J. 2019. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365: 1108-1113. DOI: https://doi.org/10.1126/science.aax0149

Ruedas M, Valverde T, Zavala-Hurtado JA. 2006. Analysis of the factors that affect the distribution and abundance of three Neobuxbaumia species (Cactaceae) that differ in their degree of rarity. Acta Oecologica 29: 155-164. DOI: https://doi.org/10.1016/j.actao.2005.09.002

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. "ImageJ2: ImageJ for the next generation of scientific image data" BMC Bioinformatics 18:529. DOI: https://doi.org/10.1186/s12859-017-1934-z

Seiwa K, Masaka K, Konno M, Iwamoto S. 2019. Role of seed size and relative abundance in conspecific negative distance-dependent seedling mortality for eight tree species in a temperate forest. Forest Ecology and Management 453: 117537. DOI: https://doi.org/10.1016/j.foreco.2019.117537

Siebert SF. 2005. The abundance and distribution of rattan over an elevation gradient in Sulawesi, Indonesia. Forest Ecology and Management 210: 143-158. DOI: https://doi.org/10.1016/j.foreco.2005.02.015

Sosa-Pivatto M, Funes G, Ferreras AE, Gurvich DE. 2014. Seed mass, germination and seedling traits for some central Argentinian cacti. Seed Science Research 24: 71-77. DOI: https://doi.org/10.1017/S0960258513000366

Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD,. Breiner FT, Burg S, Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, Fernández-Arberas O , Fossheim KF, Gómez-García D, Georges D, Grindrud ET, Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, Morra di Cella U, Normand S, Odland A, Olsen RL, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, Stöckli V, Svenning JC, Teppa G, Theurillat JP, Vittoz P, Woodin SJ,. Zimmermann NE, Wipf S. 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556: 231-234. DOI: https://doi.org/10.1038/s41586-018-0005-6

Vázquez DP. 2005. Reconsiderando el nicho hutchinsoniano. Ecología Austral 15: 149-158.

Published
2021-04-27
How to Cite
Martino, P. A., Las Peñas, M. L., & Gurvich, D. E. (2021). Associations between reproductive characteristics and abundance in Gymnocalycium quehlianum (Cactaceae) along an altitudinal gradient. Botanical Sciences, 99(3), 514-524. https://doi.org/10.17129/botsci.2762
Section
ECOLOGY / ECOLOGÍA