Species distribution of Quercus (Fagaceae) along an altitude gradient, reveals zonation in a hotspot

keywords: Biogeography, climate varaibles, Neotropic, oaks, Sierra Madre del Sur

Abstract

Background: The genus Quercus has a keystone role in the temperate forests in the northern hemisphere; thus this offers an interesting opportunity to use it as a model to know altitudinal species richness patterns which could be used in further studies and projects in biodiversity conservation.

Questions: It is possible to detect an altitudinal gradient based on the genus Quercus distribution? What climatic variables are most important in the altitudinal distribution of the genus Quercus?

Study site: The physiographic province of Sierra Madre del Sur (SMS) located southwest of Mexico.

Methods: Based on 3,267 herbarium registers of 61 species, a data matrix was created with the presence/absence of each species in altitudinal intervals of 100 m. Then a similarity matrix was obtained using the Sorensen-Dice index in the R software. Through a discriminant analysis, we evaluated for environmental differences among the altitudinal zones previously obtained through a cluster analysis.

Results: We found three altitudinal zones, each one defined by exclusive species, and two important species turnover points. The species richness distribution showed a hump-shaped pattern along the altitudinal gradient. The overall model was highly significant, evidencing the existence of different temperature and precipitation regimes throughout the altitudinal distribution of oaks species in SMS.

Conclusions: The altitudinal distribution of oak species in the SMS is not homogeneous and is restricted mainly due to differences in the precipitation and temperature regimes. The altitudinal distribution pattern found in this study could be explained considering ecological and historical factors.

Downloads

Download data is not yet available.

Author Biographies

Saddan Morales-Saldaña, Herbario de la Facultad de Ciencias, UNAM

Conceptualization, methodology, formal analysis, writing-original draft, and wrote de article.

Oscar De Luna-Bonilla, Herbario de la Facultad de Ciencias, UNAM

captured for data base and made some analysis.

Yareli Joselin Cadena-Rodríguez, Herbario de la Facultad de Ciencias, UNAM

captured for data base and data curation.

Susana Valencia-A., Herbario de la Facultad de Ciencias, UNAM

Conceptualization, conducted the investigation process, herbaria samples curation and wrote the article.

Species distribution of <em>Quercus</em> (Fagaceae) along an altitude gradient, reveals zonation in a hotspot

References

Acebey AR, Krömer T, Kessler M. 2017. Species richness and vertical distribution of ferns and lycophytes along an elevational gradient in Mexico. Flora 235: 83-91. DOI: https://doi.org/10.1016/j.flora.2017.08.003

Alcántara O, Luna I, Velázquez A. 2002. Altitudinal distribution patterns of Mexican cloud forests based upon preferential characteristic genera. Plant Ecology 161: 167-174. DOI: https://doi.org/10.1023/A:1020343410735

Aldrich PR, Cavender-Bares J. 2011. Quercus. In: Kole C, ed. Wild crop Relatives: Genomic and Breeding Resources. Heidelberg, Berlín: Springer, pp. 89-129.DOI: https://doi.org/10.1007/978-3-642-21250-5_6

Arenas-Navarro M, García-Oliva F, Torres-Miranda A, Téllez-Valdés O, Oyama K. 2020. Environmental filters determine the distribution of tree species in a threatened biodiversity hotspot in western Mexico. Botanical Sciences 98: 219-237. DOI: https://doi.org/10.17129/botsci.2398

Bach K, Gradstein SR, 2011. A comparison of six methods to detect altitudinal belts of vegetation in tropical mountains. Ecotropica 17: 1-13.

Bush MB, Colinvaux PA. 1990. A long record of climatic and vegetation change in lowland Panama. Journal of Vegetation Science 1: 105-118.

Bush MB, Silman MR, Urrego DH. 2004. 48 000 years of climate and forest change in a biodiversity hotspot. Science 303: 827-829. DOI: https://doi.org/10.1126/science.1090795

Bush MB, Correa-Metrio AY, Hodell DA, Brenner M, Anselmetti FS, Aristegui D, Mueller AD, Curtis JH, Grzesik DA, Burton C, Gilli A. 2009. Re-evalutation of Climate change in lowland Central America during the last glacial maximum using new sediment cores from lake Petén Itzá, Guatemala. In: Vimeux F, Sylvestre F, Khodri M, eds. Past Climate Variability in South America and Surrounding Regions from the Last Glacial Maximum to the Holocene. Springer, pp: 113-128. DOI: https://doi.org/10.1007/978-90-481-2672-9_5

Caballero M, Lozano-García MS, Vázquez-Selem L, Ortega B. 2010. Evidencias de cambio climático y ambiental en las cuencas de altura del centro de México durante el último máximo glacial. Boletín de la Sociedad Geológica Mexicana 62: 359-377.

Cavender-Bares J. 2016. Diversity, distribution and ecosystem services of the North American oaks. International Oaks 27: 37-48.

Cavender-Bares J. 2019. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist 221: 669-692. DOI: https://doi.org/10.1111/nph.15450

Cavender-Bares J, González-Rodríguez A, Eaton DAR, Hipp AL, Beulke A, Manos PS. 2015. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Molecular Ecology 24: 3668-3668. DOI: https://doi.org/10.1111/mec.13269

Colinvaux PA, Liu KB, Oliveira P de, Bush MB, Miller MC, Steinitz M. 1996. Temperature depression in the lowland tropics in glacial times. Climatic Change 32: 19-33. https://doi.org/10.1007/BF00141276

Colwell RK, Rahbek C, Gotelli NJ. 2004. The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163, E1-E23. DOI: https://doi.org/10.1086/49168

Contreras-Medina R. 2016. Las gimnospermas de la Sierra Madre del Sur. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur. México: Universidad Nacional Autónoma de México, pp. 157-165. ISBN: 978-607-02-7906-5

Denk T, Grimm GW, Manos PS, Deng M, Hipp AL, 2017. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns. In: Gil-Pelegrin E, Pequero-Pina JJ, Sancho-Knapic D, eds. Oaks Physiological Ecology. Explorign the Functional Diversity of Genus Quercus L. Tree Physiology 7. Switzerlan: Springer, pp. 13-38 https://doi.org/10.1007/978-3-319-69099-5_2

Dray S, Dufour A. 2007. The ade4 Package: Implementing the duality diagram for ecologists. Journal of Statistic Software 22: 1-20. DOI: https://doi.org/10.18637/jss.v022.i04

Espinosa D, Ocegueda-Cruz S, Luna-Vega I, 2016. Introducción al estudio de la Biodiversidad de la Sierra Madre del Sur: Una visión general. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur: Una síntesis preliminar. México: Universidad Nacional Autónoma de México, pp. 23-36. ISBN: 978-607-02-7906-5

Fattorini S, Di Biase L, Chiarucci A. 2019. Recognizing and interpreting vegetational belts: New wine in the old bottles of a von Humboldt´s legacy. Journal of Biogeography 46: 1643-1651 DOI: https://doi.org/10.1111/jbi.13601

Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302-4315. DOI: https://doi.org/10.1002/joc.5086

Gao J, Zhang X, Luo Z, Lan J, Liu Y. 2018. Elevational diversity gradients across seed plant taxonomic levels in the Lancang River Nature Reserve: role of temperature, water, and the mid-domain effect. Journal of Forestry Research 29: 1121-1127. DOI: https://doi.org/10.1007/s11676-017-0509-1

García E, CONABIO. 1998.’Climas’ (clasificación de Koppen modificado por García). Escala 1:1000000. Comisión para el Conocimiento y uso de la Biodiversidad México: Comisión Nacional para el Conocimiento y uso de la Biodiversidad. http://www.conabio.gob.mx/informacion/gis/ (accessed February 8, 2020).

García-Mendoza A, Ordóñez M, Briones-Salas MA. 2004. Biodiversidad de Oaxaca. Instituto de Biología, UNAM. México: Fondo Oaxaqueño para la Conservación de la Naturaleza y World Wildlife Fund. ISBN: 970-32-2045-2

González-Villarreal LM. 2003. Quercus tuitensis (Fagaceae, Quercus sect. Lobatae), a new deciduous oak from western Jalisco, Mexico. Brittonia 55: 42-48. DOI: https://doi.org/10.1663/0007-196X(2003)055[0042:QTFQSL]2.0.CO;2

Govaerts R, Frodin DG. 1998. World Checklist and Bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae, and Ticodendraceae). London: Royal Botanic Gardens, Kew. ISBN: 1 900347 46 6

Grytnes JA. 2003. Ecological interpretations of the mid-domain effect. Ecology Letters 6: 883-888. DOI: https://doi.org/10.1046/j.1461-0248.2003.00511.x

Grytnes JA, McCain CM. 2007. Elevational trends in Biodiversity, In: Levin SA, ed. Encyclopedia of Biodiversity, New York: Academic Press, pp 1-8.

Grytnes JA, Heegaard E, Romdal TS. 2008. Can the mass effect explain the mid-altitudinal peak in vascular plant species richness? Basic and Applied Ecology 9: 373-382. DOI: https://doi.org/10.1016/j.baae.2007.05.001

Grytnes JA, Romdal TS. 2008. Using museum collections to estimate diversity patterns along geographical gradients. Folia Geobotanica 43: 357-369. DOI: https://doi.org/10.1007/s12224-008-9017-6

Grytnes JA, Vetaas OR. 2002. Species richness and altitude: a comparison between null models and Interpolated Plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist 159: 294-304. DOI: https://doi.org/10.1086/338542

Guo Q, Kelt DA, Sun Z, Liu H, Hu L, Ren H, Wen J. 2013. Global variation in elevational diversity patterns. Scientific Reports 3: 3007.DOI: https://doi.org/10.1038/srep03007

Hemp A. 2006. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecology 184: 27-42. https://doi.org/10.1007/s11258-005-9049-4

Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B: Biological Science 359: 183-195. DOI: https://doi.org/10.1098/rstb.2003.1388

Hipp AL. 2010. Hill´s oak: the taxonomy and dynamics of Western Great Lakes endemic. Arnoldia 67: 2-14.

Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Valencia Avalos S, Cavender-Bares J. 2018. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217: 439-452. DOI: https://doi.org/10.1111/nph.14773

Hipp AL, Manos PS, Hahn M, Avishai M, Bodénès C, Cavender-Bares J, Crowl AA, Deng M, Denk T, Fitz-Gibbon S, Gailing O, González-Elizondo MS, González-Rodríguez A, Grimm GW, Jiang XL, Kremer A, Lesur I, McVay JD, Plomion C, Rodríguez-Correa H, Schulze ED, Simeone MC, Sork VL, Valencia-Avalos S, 2020. Genomic landscape of the global oak phylogeny. New Phytologist 226: 1198-1212. DOI: https://doi.org/10.1111/nph.16162

Hodell AD, Anselmetti SF, Ariztegui D, Brenner M, Curtis HJ, Gilli A, Grzesik A, Guilderson JT, Müller DA, Bush BM, Correo-Metrio A, Escobar J, Kutterolf S. 2008. An 85-ka record of climate change in lowland Central America. Quaternary Science Review 27: 1152-1165. https://doi.org/10.1016/j.quascirev.2008.02.008

INEGI. 2001. Provincias Fisiográficas-Escala: 1: 1,000,000. https://www.inegi.org.mx/temas/fisiografia/#Descargas (accessed October 27, 2019).

Jetz W, Rahbek C, Colwell RK. 2004. The coincidence of rarity and richness and the potential signature of history in centers of endemism. Ecology Letters 7: 1180-1191. DOI: https://doi.org/10.1111/j.1461-0248.2004.00678.x

Jiménez-López DA, Martínez-Camilo R, Martínez-Meléndez N, Kessler M. 2020. Diversity of epiphyte ferns along an elevational gradient in El Triunfo Biosphere Reserve, southern Mexico. Plant Ecology and Evolution 153: 12-21. DOI: https://doi.org/10.5091/plecevo.2020.1573

Kremer A, Hipp AL. 2019. Oaks: an evolutionary success story. New Phytologist 226: 987-1011. DOI: https://dx.doi.org/10.1111/nph.16274

Löbel S, Dengler J, Hobohm C. 2006. Species richness of vascular plants, bryophytes, and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobotanica 41: 377-393. DOI: https://doi.org/10.1007/BF02806555

Martinelli G. 2007. Mountain biodiversity in Brazil. Brazilian Journal of Botany 30: 587-597. DOI: https://doi.org/10.1590/S0100-84042007000400005

Martínez-Ramírez E, Valencia-Díaz X, Cruz-Ruíz GI, Espinosa H. 2016. Peces de la Sierra Madre del Sur. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur: Una síntesis preliminar. México: Universidad Nacional Autónoma de México, pp. 349-366. ISBN: 978-607-02-7906-5

Mastreta-Yanes A, Moreno-Letellier A, Piñero D, Jorgensen HT, Emerson CB. 2015. Biodiversity in the Mexican highlands and the interaction of geology geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography 42: 1586-1600. DOI: https://doi.org/10.1111/jbi.12546

Mastreta-Yanez A, Xue AT, Moreno-Letelier A. Jorgensen TH, Alvarez N, Piñero D. Emerson BC. 2018. Long-term in situ persistence of biodiversity in tropical sky islands revealed by landscape genomics. Molecular Ecology 27: 432-448. DOI: https://doi.org/10.1111/mec.14461

McCain MC. 2009. Global analysis of bird elevational diversity. Global Ecology and Biogeography 18: 346-369. DOI: https://doi.org/10.1111/j.1466-8238.2008.00443.x

McCain MC, Grytnes JA. 2010. Elevational Gradients in Species Richness. In: Encyclopedia of Life Sciences., pp. 1-10. https://doi.org/10.1002/9780470015902.a0022548

McGlone MS. 1996. When history matters: scale, time, climate, and tree diversity. Global Ecology & Biogeography Letters 5: 309-314. DOI: https://doi.org/10.2307/2997586

Myers N, Mittemeier AR, Mittemeier GC, da Fonseca G, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858. DOI: https://doi.org/10.1038/35002501

Navarro-Sigüenza AG, Blancas-Calva E, Almazán-Núñez R, Hernández-Baños BE, García-Trejo EA, Peterson AT. 2016. Diversidad y endemismo de las aves de la Sierra Madre del Sur. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur: Una síntesis preliminar. México: Universidad Nacional Autónoma de México, pp. 381-411. ISBN: 978-607-02-7906-5

Nixon K. 1993. The genus Quercus in Mexico. In: Ramamoorthy T, Bye R, Lot A, Fa J, eds. Biological diversity of Mexico: origins and distribution. Oxford: Oxford University Press, pp. 447-458.

Nixon K. 2006. Global and Neotropical distribution and diversity of oak (genus Quercus) forest. In: Kappelle M, ed. Ecology and conservation of Neotropical montane oak forest. Berlin: Springer, pp 3-13.

Olvera-Vargas M, Figueroa-Rangel BL, Vázquez-López JM. 2010. Is there environmental differentiation in the Quercus-dominated forests of west-central Mexico? Plant Ecology 211: 321-335. DOI: https://doi.org/10.1007/s11258-010-9792-z

Petit RJ, Bodènés C, Ducousso A, Roussel G, Kremer A. 2003. Hybridization as a mechanism of invasion in oaks. New Phytologist 161: 151-164. DOI: https://doi.org/10.1046/j.1469-8137.2003.00944.x

QGIS Development Team. 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (accessed August 10, 2020).

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Ramírez-Barahona S, Eguiarte L. 2013. The role of glacial cycles in promoting genetic diversity in the neotropics: The case of cloud forests during the Last Glacial Maximum. Ecology and Evolution 3: 725-738. DOI: https://doi.org/10.1002/ece3.483

Rzedowski J. 1978. Vegetación de México. México: Limusa. ISBN: 9681800028 9789681800024

Sabás-Rosales JL, Sosa-Ramírez J, Luna-Ruíz J de J. 2015. Diversidad, distribución y caracterización básica del hábitat de los encinos (Quercus: Fagaceae) del estado de San Luis Potosí, México. Botanical Science 93: 881-897. DOI: https://doi.org/10.17129/botsci.205

Salas-Morales SH, Meave AJ, Trejo I. 2015. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico. International Journal of Biometeorology 59: 1861-1874. DOI: https://doi.org/10.1007/s00484-015-0993-y

Salas-Morales SH, Williams-Linera G. 2019. Patterns of vegetation along contrasting elevation gradients in Oaxaca and Veracruz, México. Revista Mexicana de Biodiversidad 90: e903059, DOI: https://doi.org/10.22201/ib.20078706e.2019.90.3059

Sam K, Koane B, Bardos DC, Jeppy S, Novotny V. 2019. Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography 46: 279-290. DOI: https://doi.org/10.1111/jbi.13482

Sanders NJ. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography, 25: 25-32. DOI: https://doi.org/10.1034/j.1600-0587.2002.250104.x

SAS. 2012. Statistical Analysis System. V.9.1 ed. SAS. Institute. Inc. N.C. USA: Cary.

Solano R, Balam-Narváez R, Cruz-García G. 2016. Riqueza y distribución de la familia Orchidaceae en la Sierra Sur de Oaxaca. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur México: Una síntesis preliminar. Mexico: Universidad Nacional Autónoma de México, pp. 193-207. ISBN: 978-607-02-7906-5

Soltis DE, Morris AB., McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Molecular Ecology 15: 4261-4293. DOI: https://doi.org/10.1111/j.1365-294X.2006.03061.x

Stevens GC. 1992. The elevational gradient in altitudinal range: an extension of Rapoport´s latitudinal rule to altitude. The American Naturalist 140: 893-911. DOI: https://doi.org/10.1086/285447

Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwagner M, Jeltsch F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79-92. DOI: https://doi.org/10.1046/j.0305-0270.2003.00994.x

Toledo-Garibaldi M, Williams-Linera G. 2014. Tree diversity patterns in successive vegetation types along an elevation gradient in the Mountains of Eastern Mexico. Ecological Research 29: 1097-1104. DOI: https://doi.org/10.1007/s11284-014-1196-4

Turner JRG. 2004. Explaining the global biodiversity gradient: energy, area, history, and natural selection. Basic and Applied Ecology 5: 433-448. DOI: https://doi.org/10.1016/j.baae.2004.08.004

Tejero-Diez D, Torres-Díaz AN, Sánchez-González A. 2016. Helechos de la Sierra Madre del Sur. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur: Una síntesis preliminar. México: Universidad Nacional Autónoma de México, pp. 121-155. ISBN: 978-607-02-7906-5

Valencia-A S. 2004. Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México 75: 33-53 DOI: https://doi.org/10.17129/botsci.1692

Valencia-A S, Gual-Díaz M. 2014. La familia Fagaceae en el bosque mesófilo de montaña de México. Botanical Science 92: 193-204. DOI: https://doi.org/10.17129/botsci.45

Valencia-A S, Morales-Saldaña S. 2016. El género Quercus en la Sierra Madre del Sur. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur México: Una síntesis preliminar. México: Universidad Nacional Autónoma de México, pp. 167-175. ISBN: 978-607-02-7906-5

Vargas IF, Llorente JB, Luis MA. 1991. Lepidopterofauna de Guerrero I: Distribución y fenología de los Papilionoidea de la sierra de Atoyac. Publicaciones especiales del Museo de Zoología 2. México: Universidad Nacional Autónoma de México.

Vargas IF, Llorente JB, Luis MA. 1994. Listado lepidoptero-faunístico de la sierra de Atoyac de Álvarez en el estado de Guerrero: notas acerca de su distribución local y estacional (Rhopalocera: Papilionoidea). Folia Entomológica Mexicana 86: 41-178.

Villegas M, Ramírez-López I, Medel R, Castillo R. 2016. Biodiversidad de macromicetos en la Sierra Madre del Sur. In: Luna-Vega I, Espinosa D, Contreras-Medina R, eds. Biodiversidad de la Sierra Madre del Sur: Una síntesis preliminar. México: Universidad Nacional Autónoma de México, pp. 281-309. ISBN: 978-607-02-7906-5

Published
2021-07-22
How to Cite
Morales-Saldaña, S., De Luna-Bonilla, O. A., Cadena-Rodríguez, Y. J., & Valencia-A., S. (2021). Species distribution of Quercus (Fagaceae) along an altitude gradient, reveals zonation in a hotspot. Botanical Sciences, 99(4), 722-734. https://doi.org/10.17129/botsci.2761
Section
ECOLOGY / ECOLOGÍA