Nitrogen and phosphorus reabsorption efficiency and stoichiometric relationships during senescence in species of the Sonoran Desert

Reabsorción de N y P

keywords: reabsortion efficiency, resorption proficiency, ecology stoichiometry, biogeochemistry, drylands

Abstract

Background: Nitrogen (N) and Phosphorus (P) are the most limiting nutrients in plants and their resorption efficiency suggest conservation strategies. Resorption also change litter stoichiometry and affect ecological interactions and biogeochemical cycles along aridity gradients.

Species nutrient resorption efficiency will be higher in sites at the arid extreme, such that resorption proficiency and stoichiometry for C:N and C:P will be higher in senescent leaves.

Studied species: Ipomoea arborescens, Fouquieria macdougalii, Cercidium microphyllum, Encelia farinosa, Mimosa laxiflora, Jatropha cardiophylla, Olneya tesota, Prosopis velutina, Cercidium floridum, Fouquieria splendens, Brongniartia minutifolia, Jatropha cordata, Colubrina viridis, Larrea tridentata and Cercidium praecox.

Study site and years of study: Three sites along and aridity gradient in the Sonoran Desert, Central Region in Sonora. August to November 2017 and 2018.

Methods: We obtained N and P reabsorption efficiency, as well as stoichiometric proportions for C:N y N:P from green and senescent leaves to compare species, functional types and sites.

Results: N and P reabsorption efficiency decreased with aridity and C:N and C:P stoichiometry of senescent leaves, as well as N:P for legumes.

Conclusions: Reabsorption efficiency does not suggest a resource conservation strategy, however different functional types allowed us to differentiate ecological and stoichiometric strategies, in particular legumes, that help enhance their role in the biogeochemistry of Sonoran and Mexican arid lands.

Downloads

Download data is not yet available.

Author Biographies

Milagros Guadalupe Alvarez-Moreno, DICTUS, Universidad de Sonora. Hermosillo, Sonora

Alumno de Posgrado. Maestría en Biociencias. DICTUS, Universidad de Sonora.

Alejandro E. Castellanos, DICTUS, Universidad de Sonora. Hermosillo, Sonora

Doctor, Profesor-Investigador Tiempo Completo, DICTUS, Universidad de Sonora

José Manuel Llano-Sotelo, DICTUS, Universidad de Sonora. Hermosillo, Sonora

Doctor, Recursos Naturales. Técnico Tiempo Completo. DICTUS, Universidad de Sonora.

José Raúl Romo-León, DICTUS, Universidad de Sonora. Hermosillo, Sonora

Doctor, Profesor-investigador tiempo completo, DICTUS, Universidad de Sonora.

Kadiya del Carmen Calderón-Alvarado, DICTUS, Universidad de Sonora. Hermosillo, Sonora

Doctora, Profesora-Investigadora tiempo completo. DICTUS, Universidad de Sonora

Martín Esqueda, CIAD, A.C., Hermosillo, Sonora

Doctor. Investigador Tiempo completo. Centro de Investigación en Alimentación y Desarrollo, A. C.

Nitrogen and phosphorus reabsorption efficiency and stoichiometric relationships during senescence in species of the Sonoran Desert

References

Adams MA, Turnbull TL, Sprent JI, Buchmann N. 2016. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proceedings of the National Academy of Sciences of the United States of America 113: 4098-4103. DOI: https://doi.org/10.1073/pnas.1523936113

Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology 84: 597-608. DOI: https://doi.org/10.2307/2261481

Aerts R. 1997. Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposibility? Oikos 80: 603-606. DOI: https://doi.org/10.2307/3546636

Austin AT. 2011. Has water limited our imagination for aridland biogeochemistry? Trends in Ecology and Evolution 26: 229-235. DOI: https://doi.org/10.1016/j.tree.2011.02.003

Bertiller MB, Sain CL, Carrera A, Vargas D. 2005. Patterns of nitrogen and phosphorus conservation in dominant perennial grasses and shrubs across an aridity gradient in Patagonia, Argentina. Journal of Arid Environments 62: 209-223. DOI: https://doi.org/10.1016/j.jaridenv.2004.11.011

Bertness MD, Callaway RM. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9: 191-193. DOI: https://doi.org/10.1016/0169-5347(94)90088-4

Bloom AJ, Chapin FS, Mooney HA. 1985. Resource limitation in plants- an economic analogy. Annual Review of Ecology and Systematics 16: 363-392. DOI: https://doi.org/10.1146/annurev.es.16.110185.002051

Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications 1: 48. DOI: https://doi.org/10.1038/ncomms1046

Brant AN, Chen HYH. 2015. Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences 34: 471-486. DOI: https://doi.org/10.1080/07352689.2015.1078611

Callaway RM. 1995. Positive interactions among plants. Botanical Review 61: 306-349. DOI: https://doi.org/10.1007/BF02912621

Campanella MV, Bertiller MB. 2011. Is N-resorption efficiency related to secondary compounds and leaf longevity in coexisting plant species of the arid Patagonian Monte, Argentina? Austral Ecology 36: 395-402. DOI: https://doi.org/10.1111/j.1442-9993.2010.02165.x

Castellanos AE, Bravo LC, Koch GW, Llano J, López D, Méndez R, Rodríguez JC, Romo R, Sisk TD, Yanes-Arvayo G. 2010. Impactos ecológicos por el uso del terreno en el funcionamiento de ecosistemas áridos y semiáridos. In: Molina FE, Van Devender TR, eds. Diversidad Biológica de Sonora. México: Universidad Nacional Autónoma de México - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 157-186. ISBN: 978-607-02-0427-2

Castellanos AE, Llano-Sotelo JM, Machado-Encinas LI, López-Piña JE, Romo-Leon JR, Sardans J, Peñuelas J. 2018. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant Ecology 219: 775-788. DOI: https://doi.org/10.1007/s11258-018-0833-3

Celaya-Michel H, García-Oliva F, Rodríguez JC, Castellanos-Villegas AE. 2015. Cambios en el almacenamiento de nitrógeno y agua en el suelo de un matorral desértico transformado a sabana de buffel (Pennisetum ciliare (L.) Link). Terra Latinoamericana 33: 79-93.

Chapin III FS, Kedrowski RA. 1983. Seasonal changes in nitrogen and phosphorous fractions and autumn retranslocation in evergreen and deciduous Taiga trees. Ecology 64: 376-391. DOI: https://doi.org/10.2307/1937083

Chapin III FS, Moilanen L. 1991. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72: 709-715. DOI: https://doi.org/10.2307/2937210

Chávez-Vergara BM, González-Rodríguez A, Etchevers JD, Oyama K, García-Oliva F. 2015. Foliar nutrient resorption constrains soil nutrient transformations under two native oak species in a temperate deciduous forest in Mexico. European Journal of Forest Research 134: 803-817. DOI: https://doi.org/10.1007/s10342-015-0891-1

Chávez-Vergara BM, Merino A, González-Rodríguez A, Oyama K, García-Oliva F. 2018. Direct and legacy effects of plant-traits control litter decomposition in a deciduous oak forest in Mexico. PeerJ 6: e5095. DOI: https://doi.org/10.7717/peerj.5095

CONAGUA [Comisión Nacional del Agua]. 2019. Climogramas 1981-2010.

https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/climogramas-1981-2010 (accessed november 10, 2018).

Cornelissen JHC. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology 84: 573-582. DOI: https://doi.org/10.2307/2261479

Côté B, Fyles JW, Djalilvand H. 2002. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals of Forest Science 59: 275-281. DOI:

https://doi.org/10.1051/forest:2002023

Cross AF, Schlesinger WH. 1999. Plant regulation of soil nutrient distribution in the northern Chihuahuan Desert. Plant Ecology 145: 11-25. DOI: https://doi.org/10.1023/A:1009865020145

Delgado-Baquerizo M, Eldridge DJ, Maestre FT, Ochoa V, Gozalo B, Reich PB, Singh BK. 2017. Aridity decouples C:N:P stoichiometry across multiple trophic levels in terrestrial ecosystems. Ecosystems 21: 459-468. DOI: https://doi.org/10.1007/s10021-017-0161-9

Drenovsky RE, Pietrasiak N, Short TH. 2019. Global temporal patterns in plant nutrient resorption plasticity. Global Ecology and Biogeography 28: 728-743. DOI: https://doi.org/10.1111/geb.12885

Eckstein RL, Karlsson PS, Weih M. 1999. Leaf life span and nutrient resorption determinants of plant nutrient conservation in temperate?arctic regions. New Phytologist 143: 177-189. DOI: https://doi.org/10.1046/j.1469-8137.1999.00429.x

Franklin KA, Sommers PN, Aslan CE, López BR, Bronstein JL, Bustamante E, Búrquez A, Medellín RA, Marazzi B. 2016. Plant biotic interactions in the Sonoran Desert: Current knowledge and future research perspectives. International Journal of Plant Sciences 177: 217-234. DOI: https://doi.org/10.1086/684261

Franklin O, Ågren GI. 2002. Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation. Functional Ecology 16: 727-733. DOI: https://doi.org/10.1046/j.1365-2435.2002.00674.x

Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JH. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. Journal of Ecology 101: 943-952. DOI: https://doi.org/10.1111/1365-2745.12092

Gerdol R, Iacumin P, Marchesini R, Bragazza L. 2000. Water- and nutrient-use efficiency of a deciduous species, Vaccinium myrtillus, and an evergreen species, V. vitis-idaea, in a subalpine dwarf shrub heath in the southern Alps, Italy. Oikos 88: 19-32. DOI: https://doi.org/10.1034/j.1600-0706.2000.880104.x

Güsewell S. 2004. N: P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243-266. DOI: https://doi.org/10.1111/j.1469-8137.2004.01192.x

Güsewell S. 2005. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology 19: 344-354. DOI: https://doi.org/10.1111/j.0269-8463.2005.00967.x

Güsewell S, Gessner MO. 2009. N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology 23: 211-219. DOI: https://doi.org/10.1111/j.1365-2435.2008.01478.x

Han W, Fang J, Guo D, Zhang Y. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168: 377-385. DOI: https://doi.org/10.1111/j.1469-8137.2005.01530.x

He H, Bleby TM, Veneklaas EJ, Lambers H. 2011. Dinitrogen-fixing Acacia species from phosphorus-impoverished soils resorb leaf phosphorus efficiently. Plant Cell and Environment 34: 2060-2070. DOI: http://doi.org/10.1111/j.1365-3040.2011.02403.x

Hinojo-Hinojo C, Castellanos AE, Huxman T, Rodriguez JC, Vargas R, Romo-León JR, Biederman JA. 2019. Native shrubland and managed buffelgrass savanna in drylands: Implications for ecosystem carbon and water fluxes. Agricultural and Forest Meteorology 268: 269-278. DOI: https://doi.org/10.1016/j.agrformet.2019.01.030

Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716-1727. DOI: https://doi.org/10.2307/2265777

Kobe RK, Lepczyk CA, Iyer M. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86: 2780-2792. DOI: https://doi.org/10.1890/04-1830

Martínez DE, Costa ML, Guiamet JJ. 2008. Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biology 10: 15-22. DOI: https://doi.org/10.1111/j.1438-8677.2008.00089.x

McGroddy ME, Daufresne T, Hedin LO. 2004. Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 85: 2390-2401. DOI: https://doi.org/10.1890/03-0351

Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621-626. DOI: https://doi.org/10.2307/1936780

Milla R, Palacio-Blasco S, Maestro-Martínez M, Montserrat-Martí G. 2006. Phosphorus accretion in old leaves of a Mediterranean shrub growing at a phosphorus-rich site. Plant and Soil 280: 369-372. DOI: https://doi.org/10.1007/s11104-005-3529-0

Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A. 2011. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93: 770-782. DOI: https://doi.org/10.1890/11-0721.1

Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter AA. 2014. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 5: 22. DOI: https://doi.org/10.3389/fmicb.2014.00022

Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36. DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Peñuelas J, Fernández-Martínez M, Ciais P, Jou D, Piao S, Obersteiner M, Vicca S, Janssens IA, Sardans J. 2019. The bioelements, the elementome, and the biogeochemical niche. Ecology 100: e02652. DOI: https://doi.org/10.1002/ecy.2652

Peñuelas J, Sardans J, Ogaya R, Estiarte M. 2008. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Polish Journal of Ecology 56: 613-622.

Prieto I, Querejeta JI. 2020. Simulated climate change decreases nutrient resorption from senescing leaves. Global Change Biology 26: 1795-1807. DOI: https://doi.org/10.1111/gcb.14914

Pugnaire FI, Chapin III FS. 1993. Controls over nutrient resorption from leaves of evergreen mediterranean species. Ecology 74: 124-129. DOI: https://doi.org/10.2307/1939507

Reed SC, Townsend AR, Davidson EA, Cleveland CC. 2012. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist 196: 173-80. DOI: https://doi.org/10.1111/j.1469-8137.2012.04249.x

Schlesinger WH, Pilmanis AM. 1998. Plant-soil interactions in deserts. In: Van Breemen N, ed. Plant-Induced Soil Changes: Processes and feedbacks. Developments in Biogeochemistry, Vol. 4. Dordrecht: Springer; 169-187. DOI: https://doi.org/10.1007/978-94-017-2691-7_9

Schlesinger WH, Raikes JA, Hartley AE, Cross AF. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77: 364-374. DOI: https://doi.org/10.2307/2265615

See CR, Yanai RD, Fisk MC, Vadeboncoeur MA, Quintero BA, Fahey TJ. 2015. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest. Ecology 96: 2488-2498. DOI: https://doi.org/10.1890/15-0188.1

Shreve F, Wiggins IL. 1964. Vegetation and Flora of the Sonoran Desert. Stanford: Stanford University Press. ISBN: 9780804701631

Sohrt J, Herschbach C, Weiler M. 2018. Foliar P- but not N resorption efficiency depends on the P-concentration and the N:P ratio in trees of temperate forests. Trees 32: 1443-1455. DOI: https://doi.org/10.1007/s00468-018-1725-9

Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press. ISBN: 978-0-691-07491-7

Stewart JR, Kennedy GJ, Landes RD, Dawson JO. 2008. Foliar-nitrogen and phosphorus resorption patterns differ among nitrogen-fixing and nonfixing temperate-deciduous trees and shrubs. International Journal of Plant Sciences 169: 495-502. DOI: https://doi.org/10.1086/528749

Tateno M. 2003. Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Oecologia 137: 338-343. DOI: https://doi.org/10.1007/s00442-003-1357-6

Tully KL, Wood TE, Schwantes AM, Lawrence D. 2013. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba. Ecology 94: 930-940. DOI: https://doi.org/10.1890/12-0781.1

Turner RM, Bowers JE, Burgess TL, Hastings JR. 1995. Sonoran Desert Plants: An Ecological Atlas. Tucson: University of Arizona Press. ISBN: 9780816515325.

Van Heerwaarden LM, Toet S, Aerts R. 2003. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101: 664-669. DOI: https://doi.org/10.1034/j.1600-0706.2003.12351.x

Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82: 205-220. DOI: https://doi.org/10.1890/11-0416.1

Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ. 2004. Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85: 1217-1229. DOI: https://doi.org/10.1890/02-0249

West NE, Skujins J. 1978. Nitrogen in Desert Ecosystems. Stroudsburg: Dowden, Hutchinson & Ross. ISBN: 0879333332.

Wright IJ, Westoby M. 2002. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist 155: 403-416. DOI: https://doi.org/10.1046/j.1469-8137.2002.00479.x

Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology 17: 10-19. DOI: https://doi.org/10.1046/j.1365-2435.2003.00694.x

Yuan Z-Y, Chen HYH. 2009. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography 18: 11-18. DOI: https://doi.org/10.1111/j.1466-8238.2008.00425.x

Yuan Z-Y, Chen HYH. 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change 5: 465-469. DOI: https://doi.org/10.1038/nclimate2549

Yuan Z-Y, Li L-H, Han X-G, Huang J-H, Jiang G-M, Wan S-Q, Zhang W-H, Chen Q-S. 2005. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments 63: 191-202. DOI: https://doi.org/10.1016/j.jaridenv.2005.01.023

Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W. 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs 85: 133-155. DOI: https://doi.org/10.1890/14-0777.1

Zhao G, Shi P, Wu J, Xiong D, Zong N, Zhang X. 2017. Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau. Ecology and Evolution 7: 7201-7212. DOI: https://doi.org/10.1002/ece3.3283

Published
2021-04-15
How to Cite
Alvarez-Moreno, M. G., Castellanos, A. E., Llano-Sotelo, J. M., Romo-León, J. R., Calderón-Alvarado, K. del C., & Esqueda, M. (2021). Nitrogen and phosphorus reabsorption efficiency and stoichiometric relationships during senescence in species of the Sonoran Desert. Botanical Sciences, 99(3), 499-513. https://doi.org/10.17129/botsci.2732
Section
ECOLOGY / ECOLOGÍA