Phytotoxic activity of aqueous extracts of ruderal plants and its potential application to tomato crop

keywords: Allelopathy, Baccharis salicifolia, bioherbicide, Lepidium virginicum, plants extract, weed control

Abstract

Background: The application of synthetic pesticides to the tomato crop (Solanum lycopersicum -Solanaceae-) increases fruit production, but also carries risks for the environment, human and animal health.

Hypothesis: local ruderal plant extracts could be an alternative for weed control, with potential applications in agroecology and organic agriculture.

Methods: Organic and aqueous extracts (1 and 10% w/v) were prepared with the fresh (FAE) and dry (DAE) aerial parts of five ruderal species from Tlaxcala, Mexico: Argemone mexicana L. (Papaveraceae), Baccharis salicifolia Pers. (Asteraceae), Lepidium virginicum L. (Brassicaceae), Leucena leucocephala S. Zárate (Fabaceae) and Reseda luteola L. (Resedaceae). Their phytotoxic activity was evaluated in vitro with the seeds of three model plants (amaranth, lettuce, and tomato).

Results: DAE of B. salicifolia and L. virginicum (1 % w/v) showed the highest potential as natural herbicides. These inhibited 100 % seed germination and radicle elongation in the three model plants but did not affect the growth of tomato seedlings of 8 and 12 weeks in greenhouse conditions. Both extracts analyzed by HPLC-ESI-QTOF-MS showed two major peaks. Bacharis salicifolia with m/z 432.9 and 725.4. Lepidium virginicum with m/z 532.9 and 527.1.

Conclusions:DAE of local ruderal plants B. salicifolia and L. virginicum (1 % w/v) are potential natural herbicides, without harmful effects on tomato cultivated seedlings, awaiting the precise identification of their active compounds.

Downloads

Download data is not yet available.
Phytotoxic activity of aqueous extracts of ruderal plants and its potential application to tomato crop

References

Abdel-Monaim MF, Abo-Elyousr KAM, Morsy KM. 2011. Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Protection 30: 185-191. DOI: https://doi.org/10.1016/j.cropro.2010.09.016

Adisa IO, Reddy Pullagurala VL, Rawat S, Hernandez-Viezcas JA, Dimkpa CO, Elmer WH, White JC, Peralta-Videa JR, Gardea-Torresdey JL. 2018. Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry 66: 5959-5970. DOI: https://doi.org/10.1021/acs.jafc.8b01345

Agrawal AA, Kurashige NS. 2003. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. Journal of Chemical Ecology 29: 1403-1415. DOI: https://doi.org/10.1023/A:1024265420375

Ahmed SD.AG, Messiha NK, El-Masry RR, El-Dabaa MAT. 2020. The dual allelopathic capacity of two Brassicaceae plants’ seed powder in controlling Orobanche crenata infesting Pisum sativum as well as stimulating its growth and yield. Bulletin of the National Research Centre 44: 1-17. DOI: https://doi.org/10.1186/s42269-020-0276-6

Anaya AL, Calera MR, Mata R, Pereda-Miranda R. 1990. Allelopathic potential of compounds isolated from Ipomoea tricolor cav. (Convolvulaceae). Journal of Chemical Ecology 16: 2145-2152. DOI: https://doi.org/10.1007/BF01026926

Anaya AL, Mata R, Sims JJ, González-Coloma A, Cruz-Ortega R, Guadaño A, Hernández-Bautista BE, Midland SR, Gómez-Pompa A. 2003. Allelochemical potential of Callicarpa acuminata. Journal of Chemical Ecology 29: 2761-2776. DOI: https://doi.org/10.1023/B:JOEC.0000008019.22063.5c

Anaya AL, Ramos L, Cruz R, Hernández JG, Nava V. 1987. Perspectives on allelopathy in Mexican traditional agroecosystems: a case study in Tlaxcala. Journal of Chemical Ecology 13: 2083-2101. DOI: https://doi.org/10.1007/BF01012873

Bakht T, Khan IA. 2014. Weed control in tomato (Lycopersicon esculentum Mill.) through mulching and herbicides. Pakistan Journal of Botany 46: 289-292.

Bergougnoux V. 2014. The history of tomato: from domestication to biopharming. Biotechnology Advances 32: 170-189. DOI: https://doi.org/10.1016/j.biotechadv.2013.11.003

Calzada F, Barbosa E, Cedillo?Rivera R. 2003. Antiamoebic activity of benzyl glucosinolate from Lepidium virginicum. Phytotherapy Research 17: 618-619. DOI: https://doi.org/10.1002/ptr.1210

Carrizo Flores R, Ponzi M, Ardanaz C, Tonn CE, Donadel OJ. 2009. Chemical composition of essential oil of Baccharis salicifolia (Ruiz & Pavon) Pers. and antibacterial activity. Journal of the Chilean Chemical Society 54: 475-476. DOI: http://dx.doi.org/10.4067/S0717-97072009000400034

Céspedes CL, Marín JC, Domínguez M, Avila JG, Serrato B. 2006. Plant growth inhibitory activities by secondary metabolites isolated from Latin American flora. Advances in Phytomedicine 2: 373-410. DOI: https://doi.org/10.1016/S1572-557X(05)02021-0

Da Cruz Cabral L, Fernandez Pinto V, Patriarca A. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology 166: 1-14. DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.05.026

de Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K. 2015. What lies beneath: belowground defense strategies in plants. Trends in Plant Science 20: 91-101. DOI: https://doi.org/10.1016/j.tplants.2014.09.007

de Rodríguez DJ, Rodríguez García R, Hernández Castillo FD, Aguilar González CN, Galindo AS, Villarreal Quintanilla J, Moreno Zuccolotto L. 2011. In vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Industrial Crops and Products 34: 960-966. DOI: https://doi.org/10.1016/j.indcrop.2011.03.001

del Corral S, Cuffini SL, Cardoso SG, Bortoluzzid AJ, Palacios SM. 2012. Phytotoxic halimanes isolated from Baccharis salicifolia (Ruiz & Pad.) Pers. Phytochemistry Letters 5: 280-283. DOI: https://doi.org/10.1016/j.phytol.2012.02.001

Domínguez LM. 2002. Comparación de la actividad herbicida de dos especies de la familia Asteraceae; Baccharis salicifolia y Baccharis conferta. BSc. Thesis. Universidad Nacional Autónoma de México.

Dominguez XA, El Dahmi S, Rombold C. 1986. Hydroxyacetophenone derivatives from Baccharis glutinosa. Journal of Natural Products 49: 143-144. DOI: https://doi.org/10.1021/np50043a019

El-Masry RR, El-Desoki ER, El-Dabaa MAT, Messiha NK, Ahmed SEDAE. 2019. Evaluating the allelopathic potentiality of seed powder of two Brassicaceae plants in controlling Orobanche ramosa parasitizing Lycopersicon esculentum Mill. plants. Bulletin of the National Research Centre 43: 101. DOI: https://doi.org/10.1186/s42269-019-0144-4.

Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KH. 2011. The role of allelopathy in agricultural pest management. Pest Management Science 67: 493-506. DOI: https://doi.org/10.1002/ps.2091

García M, Donadel OJ, Ardanaz CE, Tonn CE, Sosa ME. 2005. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Management Science 61: 612-618. DOI: https://doi.org/10.1002/ps.1028

Jakupovic J, Schuster A, Ganzer U, Bohlmann F, Boldt PE. 1990. Sesqui- and diterpenes from Baccharis species. Phytochemistry 29: 2217-2222. https://doi.org/10.1016/0031-9422(90)83041-X

Korres NE, Burgos NR, Duke SO, eds. 2018. Weed Control: Sustainability, Hazards, and Risks in Cropping Systems Worldwide. Arkansas, USA: CRC Press. Taylor & Francis Group. ISBN: 978-1-498-78746-8

Loayza I, Abujder D, Aranda R, Jakupovic J, Collin G, Deslauriers H, Jean FI. 1995. Essential oils of Baccharis salicifolia, B. latifolia and B. dracunculifolia. Phytochemistry 38: 381-389. DOI: https://doi.org/10.1016/0031-9422(94)00628-7

M'barek K, Zribi I, Haouala R. 2018. Allelopathic effects of Tetraclinis articulata on barley, lettuce, radish and tomato. Allelopathy Journal 43: 187-202. DOI: https://doi.org/10.26651/allelo.j./2018-43-2-1140

Morillo E, Villaverde J. 2017. Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment 586: 576-597. DOI: https://doi.org/10.1016/j.scitotenv.2017.02.020

Moshi AP, Matoju I. 2017. The status of research on and application of biopesticides in Tanzania. Review. Crop Protection 92: 16-28. DOI: https://doi.org/10.1016/j.cropro.2016.10.008

Palacios SM, del Corral S, Carpinella MC, Ruiz G. 2010. Screening for natural inhibitors of germination and seedling growth in native plants from Central Argentina. Industrial Crops and Products 32: 674-677. DOI: https://doi.org/10.1016/j.indcrop.2010.05.004

Potito AP, Beatty SW. 2005. Impacts of recreation trails on exotic and ruderal species distribution in grassland areas along the Colorado Front Range. Environmental Management 36: 230-236. DOI: https://doi.org/10.1007/s00267-003-0177-0

Purwar C, Rai R, Srivastava N, Singh J. 2003. New flavonoid glycosides from Cassia occidentalis. Indian Journal of Chemistry 42: 434-436.

Rongai D, Milano F, Sciò E. 2012. Inhibitory effect of plant extracts on conidial germination of the phytopathogenic fungus Fusarium oxysporum. American Journal of Plant Sciences 3: 1693. DOI: http://doi.org/10.4236/ajps.2012.312207

Rosas-Burgos EC, Cortez-Rocha MO, Cinco-Moroyoqui FJ, Robles-Zepeda RE, López-Cervantes J, Sánchez-Machado DI, Lares-Villa F. 2009. Antifungal activity in vitro of Baccharis glutinosa and Ambrosia confertiflora extracts on Aspergillus flavus, Aspergillus parasiticus and Fusarium verticillioides. World Journal of Microbiology and Biotechnology 25: 2257. DOI: https://doi.org/10.1007/s11274-009-0116-1

SAGARPA [Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación]. 2017. Servicio de Información Agroalimentaria y Pesquera (SIAP) - Atlas Agroalimentario-Estadisticas del SIAP - Producción Agricola en el Estado de Tlaxcala, enero y noviembre, 2016. URL: https://nube.siap.gob.mx/cierreagricola/. (accessed June 01, 2019)

Scavo A, Pandino G, Restuccia A, Mauromicale G. 2020. Leaf extracts of cultivated cardoon as potential bioherbicide. Scientia Horticulturae 261: 109024 DOI: https://doi.org/10.1016/j.scienta.2019.109024

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2015. Agenda Internacional - Protocolo de Montreal - Protocolo de montreal relativo a las sustancias que agotan la capa de ozono URL: https://www.gob.mx/semarnat/acciones-y-programas/protocolo-de-montreal-relativo-a-las-sustancias-que-agotan-la-capa-de-ozono-protocolo-de-montreal. (accessed December 5, 2015)

Sosa ME, Lancelle HG, Tonn CE, Andres MF, Gonzalez-Coloma A. 2012. Insecticidal and nematicidal essential oils from Argentinean Eupatorium and Baccharis spp. Biochemical Systematics and Ecology 43: 132-138. DOI: https://doi.org/10.1016/j.bse.2012.03.007

Talibi I, Askarne L, Boubaker H, Boudyach EH, Msanda F, Saadi B, Aoumar AAB. 2012. Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop Protection 35: 41-46. DOI: https://doi.org/10.1016/j.cropro.2011.12.016

Vyvyan JR. 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58: 1631-1636. DOI: https://doi.org/10.1016/S0040-4020(02)00052-2

Zdero C, Bohlmann F, King RM, Robinson H. 1986. Diterpene glycosides and other constituents from Argentinian Baccharis species. Phytochemistry 25: 2841-2855. DOI: https://doi.org/10.1016/S0031-9422(00)83754-1

Published
2021-05-18
How to Cite
Miranda-Arámbula, M., Reyes-Chilpa, R., & Anaya L., A. L. (2021). Phytotoxic activity of aqueous extracts of ruderal plants and its potential application to tomato crop. Botanical Sciences, 99(3), 487-498. https://doi.org/10.17129/botsci.2727
Section
ECOLOGY / ECOLOGÍA