Effects of water restriction on carbohydrates concentration, starch granules size and amylolytic activity in seeds of Phaseolus vulgaris L. and P. acutifolius A. Gray

keywords: enzymatic degradation, gremination, imbibition, legume, photoassimilates, seed development


Background: Seed mass is a key component of adaptation in plants that are strongly affected by development and maturity, and, at the same time, all is modulated by the environment of cultivation.

Hypotheses: The response to water deficit in seeds of P. vulgaris L. and P. acutifolius A. Gray is species-dependent and affects their biochemical and morphological characteristics.

Studied species: The studied cultivars were Rosa Bufa (P. vulgaris) and cv. 10017 (P. acutifolius). Seeds were obtained from plants grown at 100 % and 25 % soil field capacity during their pod development.  

Study site and dates: The experiments were performed during May and August 2018 in a greenhouse at the Colegio de Postgraduados, Texcoco, State of Mexico (altitude 2,353 m).

Methods: The biochemical and morphological characteristics and the grain size of starch in seeds cotyledons were assessed.

Results: Water restriction had no significant effects on the seed thickness, width, or mass only length decreased in P. acutifolius. In both species, the axis size of the starch granules decreased due to the stress, glucose concentration increased, sucrose and starch were not altered.  Water imbibition increased six times in P. vulgaris seeds with no effect on the germination. The α-amylase activity was 25 - 35 % lower in both species due to the water restriction, particularly in P. acutifolius the activity was two-fold higher than in P. vulgaris.

Conclusions: Comparing the carbohydrate concentration in germinating seeds of common and Tepary beans gave insights on the nutrient reserves mobilization during seed maturation and germination.


Download data is not yet available.
Effects of water restriction on carbohydrates concentration, starch granules size and amylolytic activity in seeds of <em>Phaseolus vulgaris</em> L. and <em>P. acutifolius</em> A. Gray


Ali AS, Elozeiri AA. 2017. Metabolic processes during seed germination. In Advances in Seed Biology. InTech, pp-141-166. DOI: https://doi.org/10.5772/intechopen.70653
Aliu S, Rusinovci I, Fetahu S, Bradhi N, Bislimi K. 2016. Effect of water stress on seed imbibitions in common bean (Phaseolus vulgaris). Acta Horticulturae 1142: 429-434
DOI: https://doi.org/10.17660/ActaHortic.2016.1142.64

Beck E, Ziegler P. 1989. Biosynthesis and Degradation of Starch in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology 40: 95-117. DOI: https://doi.org/10.1146/annurev.pp.40.060189.000523

Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. 2013. Phenotyping common beans for adaptation to drought. Frontiers in Physiolology 4:35. DOI: https://doi.org/10.3389/fphys.2013.00035

Bernal L, Coello P, Martínez-Barajas E. 2005. Possible role played by R1 protein in starch accumulation in bean (Phaseolus vulgaris) seedlings under phosphate deficiency. Journal of Plant Physiology 162: 970-976. DOI: https://doi.org/10.1016/j.jplph.2004.12.005

Blessing CH, Mariette A, Kaloki P, Bramley H. 2018. Profligate and conservative: water use strategies in grain legumes. Journal of Experimental Botany 69: 349-369. DOI: https://doi.org/10.1093/jxb/erx415.

Bhardwaj HL, Hamama AA. 2004. Protein and mineral composition of Tepari bean seed. Horticultural Science 39: 1363-1365. https://doi.org/10.21273/HORTSCI.39.6.1363
Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, Santo D, Nanni L, Attene G, Papa, R. 2017. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Frontiers in plant science 8: 722-722. DOI: https://doi.org/10.3389/fpls.2017.00722

Borji M, Ghorbanli M, Sarlak M. 2007. Some seed traits and their relationships to seed germination, emergence rate electrical conductivity in common bean (Phaseolus vulgaris L.). Asian Journal of Plant Science 6: 781-787. DOI: https://doi.org/10.3923/ajps.2007.781.787

Cárdenas Ramos F, Muruaga Martinez J, Acosta Gallegos J. 1996. Banco de germoplasma de Phaseolus spp. del Instituto Nacional de Investigaciones Forestales y Agropecuarias: catalogo. México: INIFAP-CONABIO.

Cornejo-Ramírez YI, Martínez-Cruz O, Del Toro-Sánchez CL, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ. 2018. The structural characteristics of starches and their functional properties. CyTA - Journal of Food 16: 1003-1017. DOI: https://doi.org/10.1080/19476337.2018.1518343

Cuellar-Ortiz SM, De La Paz Arrieta-Montiel M, Acosta-Gallegos J, Covarrubias AA. 2008. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell & Environment 31: 1399-1409. DOI: https://doi.org/10.1111/j.1365-3040.2008.01853.x

Chen GX, Zhen SM, Liu YL, Yan X, Zhang M, Yan YM. 2017. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response. BMC Plant Biology 17:168. DOI: https://doi.org/10.1186/s12870-017-1118-z

Damaris RN, Lin Z, YangP, He D. 2019. The Rice Alpha-Amylase, Conserved Regulator of Seed Maturation and Germination. International Journal of Molecular Sciences 20: 450. DOI: https://doi.org/10.3390/ijms20020450

Daryanto S, Wang L, Jacinthe PA. 2015. Global Synthesis of Drought Effects on Food Legume Production. PLOS ONE 10: e0127401. DOI: https://doi.org/journal.pone.0127401
Delatte T, Umhang M, Trevisan M, Eicke S, Thorneycroft D, Smith SM, Zeeman SC. 2006. Evidence for Distinct Mechanisms of Starch Granule Breakdown in Plants. Journal of Biological Chemistry 28: 12050-12059. DOI: https://doi.org/10.1074/jbc.M513661200

Fang XW, Turner NC, Li FM, Siddique KHM. 2011. An early transient water deficit reduces flower number and pod production but increases seed size in chickpea (Cicer arietinum L.). Crop and Pasture Science 62: 481–487. DOI: https://doi.org/10.1071/Cp10349

Gusmao M, Siddique KHM, Flower K, Nesbitt H, Veneklaas EJ. 2012. Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. Journal of Agronomy and Crop Science 198: 430–441. https://doi.org/10.1111/j.1439-037X.2012.00513.x

International Legume Database & Information Service (ILDIS) [Online]. 2018. Available at: http://www.legumes-online.net/ildis/aweb/td056/td_11932.htm (accessed July 19, 2018)

Jiménez Galindo JC, Acosta Gallegos JA. 2012. Caracterización de genotipos criollos de frijol Tepari (Phaseolus acutifolius A. Gray) y común (Phaseolus vulgaris L.) bajo temporal. Revista Mexicana de Ciencias Agrícolas 3: 1565-1577. DOI: https://doi.org/10.29312/remexca.v3i8.1321

Jiménez Galindo JC, Acosta Gallegos JA. 2013. Rendimiento de frijol común (Phaseolus vulgaris L.) y Tépari (Phaseolus acutifolius A. Gray) bajo el método riego-sequía en Chihuahua. Revista. Mexicana de Ciencias. Agrícolas 4: 557-567. DOI: https://doi.org/10.29312/remexca.v4i4.1188

Koch KE. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opiion in Plant Biol. 7: 235–246 DOI: https://doi.org/10.1016/j.pbi.2004.03.014

Leal-Delgado R, Peña-Valdivia CB, García-Nava R, García-Esteva A, Martínez-Barajas E, Padilla-Chacón D. 2019. Phenotypical, physiological and biochemical traits of the vegetative growth of wild Tepary bean (Phaseolus acutifolius) under restricted water conditions. South African Journal of Plant and Soil 36: 261-270. DOI: https://doi.org/10.1080/02571862.2018.1554749

Lemmens E, Moroni AV, Pagand J, Heirbaut P, Ritala A, Karlen Y,Le AL, van den Broeck HC, Brouns FJPH, De Brier N, Delcour JA. 2019. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Comprehensive Reviews in Food Science and Food Safety 18: 305-328. DOI: https://doi.org/10.1111/1541-4337.12414

Liu L, Xia W, Li H, Zeng H, Wei B, Han S, Yin C. 2018. Salinity Inhibits Rice Seed Germination by Reducing ?-Amylase Activity via Decreased Bioactive Gibberellin Content. Frontiers in Plant Science 9: 275-275. DOI: https://doi.org/10.3389/fpls.2018.00275

Lu H, Hu Y, Wang C, Liu W, Ma G, Han Q, Ma D. 2019. Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains. Frontiers in Plant Science 10: 1414. DOI: https://doi.org/10.3389/fpls.2019.01414

Lotfi N, Vahdati K, Amiri R, Kholdebarin B. 2010. Drought-induced accumulation of sugars and proline in radicle and plumule of tolerant walnut varieties during germination phase. Acta Horticulturae 861: 289-296. DOI: https://doi.org/10.17660/ActaHortic.2010.861.39

Mwami BM, Nguluu SN, Kimiti JM, Kimatu JN. 2017. Effects of Water Imbibition of Selected Bean Varieties on Germination. International Journal of Agricultural Research and Review 5:579-587.

Ovando-Martínez M, Bello-Pérez L, Whitney K, Osorio-Díaz P, Simsek S. 2011. Starch characteristics of bean (Phaseolus vulgaris L.) grown in different localities. Carbohydrate Polymers 85: 54-64. DOI: https://doi.org/10.1016/j.carbpol.2011.01.043

Pushpavalli R, Zaman-Allah M, Turner NC, Baddam R, Rao MV, Vadez V. 2015. Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Functional Plant Biology 42: 162–174. DOI: https://doi.org/10.1071/FP14135

Ruan YL. 2012. Signaling role of sucrose metabolism in development. Molecular Plant 5: 763–765. DOI: https://doi.org/10.1093/mp/sss046

Shate SK, Deshpande SS. 2003. BEANS. Encyclopedia of Food Sciences and Nutrition (Second Edition). Oxford: Academic Press. pp-403-412. ISBN: 978-0-12-227055-0
Saux M, Ponnaiah M, Langlade N, Zanchetta C, Balliau T, El-Maarouf-Bouteau H, Bailly, C. 2020. A multiscale approach reveals regulatory players of water stress responses in seeds during germination. Plant Cell & Environment 43: 1300-1313. DOI: https://doi.org/10.1111/pce.13731

Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney R. K., HanumanthaRao B, Nair RM, Prassa PVV, Nayyar H. 2018. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Frontiers in Plant Science 9:1705. DOI: https://doi.org/10.3389/fpls.2018.01705

Shrestha R, Turner NC, Siddique KHM, Turner DW, Speijers J. 2006. A water deficit during pod development in lentils reduces flower and pod numbers but not seed size. Australian Journal of Agricultural Research 57: 427–438. DOI: https://doi.org/10.1071/AR05225

Srivastava G, Kayastha AM. 2014. ?-Amylase from Starchless Seeds of Trigonella Foenum-Graecum and Its Localization in Germinating Seeds. PLOS ONE 9: e88697. DOI: https://doi.org /10.1371/journal.pone.0088697

Tayade R, Kulkarni KP, Jo H, Song JT, Lee J.-D. 2019. Insight Into the Prospects for the Improvement of Seed Starch in Legume—A Review. Frontiers in Plant Science 10: 1213. DOI: https://doi.org/10.3389/fpls.2019.01213

Valadez-Vega C, Guzmán-Partida AM, Soto-Cordova FJ, Alvarez-Manilla G, Morales-González JA, Madrigal-Santillán E, Villagómez-Ibarra JR, Zúñiga Pérez C, Gutierrez-Salinas J, Becerril-Flores MA. 2011. Purification, biochemical characterization, and bioactive properties of a lectin purified from the seeds of white Tepary bean (Phaseolus acutifolius variety latifolius). Molecules (Basel, Switzerland) 16: 2561-2582. DOI: https://doi.org/10.3390/molecules16032561

Weber H, Borisjuk L, Wobus U. 1996. Controlling seed development and seed size in Vicia faba: a role for seed coat-associated invertases and carbohydrate state. The Plant Journal 10: 823–834. DOI: https://doi.org/10.1046/j.1365-313X.1996.10050823.x

Yang J, Zhang J, Wang Z, Zhu Q. 2001. Activities of starch hydrolytic enzymes and sucrose?phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of Experimental Botany 52: 2169– 2179. DOI: https://doi.org/10.1093/jexbot/52.364.2169

Ye H, Roorkiwal M, Valliyodan B, Zhou L, Chen P, Varshney R K, Nguyen HT. 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany 69: 3267-3277. DOI: https://doi.org/10.1093/jxb/ery082

Zeeman SC, Northrop FS, A.M. Rees T. ap. 1998. A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. The Plant Journal 15: 357-365. DOI: https://doi.org/10.1046/j.1365-313X.1998.00213.x

Zhang W, Gu J, Wang Z, Wei C, Yang, J, Zhang J. 2017. Comparison of Structural and Functional Properties of Wheat Starch Under Different Soil Drought Conditions. Scientific Reports 7. DOI: https://doi.org/10.1038/s41598-017-10802-3

Zhou F, Jing L, Wang D, Bao F, Lu W, Wang G. 2018. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Scientific Reports 8: 6343. https://doi.org/10.1038/s41598-018-23977-0
How to Cite
Cilia García, M., Peña-Valdivia, C. B., Bernal Gracida, L. A., Yáñez Jiménez, P., García Esteva, A., & Padilla-Chacón, D. (2021). Effects of water restriction on carbohydrates concentration, starch granules size and amylolytic activity in seeds of Phaseolus vulgaris L. and P. acutifolius A. Gray. Botanical Sciences, 99(2), 364-376. https://doi.org/10.17129/botsci.2647