Floral biology, floral visitors, and reproductive system of Nymphaea gracilis Zucc. (Nymphaceae)

keywords: autogamy, facultative xenogamy, inbreeding depression, reproductive strategy, self-compatibility


Background: Floral biology influences the plant reproductive systems and allows identify factors that affect the survival and dynamics of plant populations.

Questions: What are the floral attributes, the floral display, the reproductive system, reproductive performance, and the main floral visitors of N. gracilis? Can intrapopulation crossings lead to inbreeding depression?

Study species: Nymphaea gracilis an emerging rooted hydrophyte endemic to central Mexico and threatened with extinction.

Site and years of studies: The study was carried out in two bodies of water in the municipality of Toluca, State of Mexico. From August to December 2017 and 2018.

Methods: The floral morphology and the male and female function were evaluated throughout the anthesis. The production and biomass of fruits and seeds, the floral visitors and the pollen: ovule relationship were analyzed. The reproductive strategy was evaluated by pollinator exclusion experiments and artificial pollinations.

Results: Nymphaea gracilis presents diurnal anthesis for 4-6 days, stigmatic receptivity first two days, incomplete protogyny and facultative xenogamy. Apis mellifera made the largest contribution of pollination. Artificial crosses indicated that the species is not agamosperm and that it maintains a mixed crossing system, autocompatibility, autogamy, pollinator-mediated pollen limitation, and relatively low levels of inbreeding depression.

Conclusions: The mixed reproductive system in N. gracilis could be favoring the permanence of the population and guarantee the offspring in an environment where the availability of pollinators is low.


Download data is not yet available.

Author Biographies

Carmen Zepeda-Gómez, Universidad Autónoma del Estado de México

Profesora-Investigadora de la Facultad de Ciencias, departamento de Biología. Universidad Autónoma del Estado de México. 

Emanuel Cruz-Muciño, Universidad Autónoma del Estado de México

Biólogo. Facultad de Ciencias, Universidad Autónoma del Estado de México.

Cristina Burrola-Aguilar , Universidad Autónoma del Estado de México

Investigadora del Centro de Investigación en Recursos Bióticos, Universidad Autónoma del Estado de México.

María Elena Estrada-Zuñiga, Universidad Autónoma del Estado de México

Investigadora del Centro de Investigación en Recursos Bióticos, Universidad Autónoma del Estado de México.

Floral biology, floral visitors, and reproductive system of Nymphaea gracilis Zucc. (Nymphaceae)


• Ågren J, Schemske DW. 1993. Outcrossing rate and inbreeding depression in two annual monoecious herbs, Begonia hirsuta and B. semiovata. Evolution 47: 125-135. DOI: https://doi.org/10.1111/j.1558-5646.1993.tb01204.x
• Agren J. 1996. Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77: 1779-1790. DOI: https://doi.org/10.2307/2265783
• Augspurger CK. 1983. Phenology, flowering synchrony and fruit set of six neotropical shrubs. Biotropica 15: 257-267. DOI: https://doi.org/10.2307/2387650
• Barrios Y, Ramírez N. 2008. Depresión por exogamia y biología reproductiva de Nymphaea ampla (Salisb.) DC. (Nymphaeaceae). Acta Botanica Venezuelica 31: Sitio <539-556. ieved from http://www.redalyc.org/articulo.oa?id=86214150013> (acceso mayo 12, 2020).
• Begum AH, Ghosal KK, Chattopadhyay TK. 2010. Comparative morphology and floral biology of three species of the genus Nymphaea from Bangladesh. Bangladesh Journal of Botany 39: 179-183. DOI: https://doi.org/10.3329/bjb.v39i2.7478
• Borsch T, Löhne C, Mbaye SM, Wiersema JH. 2011. Towards a complete species tree of Nymphaea: shedding further light on subg. Brachyceras and its relationships to the Australian water-lilies. Telopea 13: 193-217. DOI: https://doi.org/10.7751/telopea20116014
• Brook BW, Tonkyn DW, O’Grady JJ, Frankham R. 2002. Contribution of inbreeding to extinction risk in threatened species. Conservation Ecology 6: 16. Sitio (acceso mayo 12, 2020).
• Capperino ME, Schneider EL. 1985. Floral biology of Nymphaea mexicana Zucc. (Nymphaeaceae). Aquatic Botany 23: 83-93. DOI: https://doi.org/10.1016/0304-3770(85)90022-1
• Castro S, Silveira P, Navarro L. 2008. How flower biology and breeding system affect the reproductive success of the narrow endemic Polygala vayredae Costa (Polygalaceae). Botanical Journal of the Linnean Society 157: 67-81. DOI: https://doi.org/10.1197/j.aem.2004.05.033
• Çet?nba? A, Ünal M. 2014. An overview of dichogamy in angiosperms an overview of dichogamy in angiosperms. Research in Plant Biology 4: 09-27. Sitio (acceso mayo 12, 2020).
• Charlesworth D. 2006. Evolution of plant breeding systems. Current Biology 16: 726-735. DOI: https://doi.org/10.1016/j.cub.2006.07.068
• Conard H. 1905. The water lilies: a monograph of the genus Nymphaea. Washington, D.C.: Carnegie Institution of Washington. SBN-13: 978-0948697173. DOI: https://doi.org/10.5962/bhl.title.51290
• Cruden RW. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32-46. DOI: https://doi.org/10.2307/2407542
• Cruden RW. 2000. Pollen grains: why so many? Plant Systematics and Evolution 222: 143-165. Sitio (acceso mayo 12, 2020).
• Dafni A. 1992. Pollination ecology: A practical approcach. New York, USA: Oxford University Press. ISBN: 9780199632992.
• Dafni A, Pacini E, Nepi M. 2005. Pollen and stigma biology. In: Dafni A, Kevan PG, Husband B, eds. Practical pollination biology. Canadá; Eviroquest Ltd. ISBN:13: 9780968012307.
• Eckert CG. 2014. Contributions of autogamy and geitonogamy to self-fertilization in mass flowering clonal plant. Ecology 81: 532-542. DOI: https://doi.org/10.2307/177446
• Endress PK. 2001. The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant Sciences 162: 1111-1140. DOI: https://doi.org/10.1086/321919
• Endress PK. 2010. The evolution of floral biology in basal angiosperms. Philosophical Transactions of the Royal Society B Biological Sciences 365: 411-421. DOI: https://doi.org/10.1098/rstb.2009.0228
• Escaravage N, Wagner J. 2004. Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biology 6: 606-615. DOI: https://doi.org/10.1055/s-2004-821143
• GEM [Gobierno del Estado de México]. 2014. Atlas de la Cuenca del Río Lerma en el Estado de México (2nd ed.). Toluca, México: Fondo Editorial Estado de México.
• Goodwillie C, Weber JJ. 2018. The best of both worlds? A review of delayed selfing in flowering plants. American Journal of Botany 2: 641-655. DOI: https://doi.org/10.1002/ajb2.1045
• Harder LD, Barrett SCH. 2006. Ecology and Evolution of Flowers. New York: Oxford University Press. ISBN: 978-0-19-857085-1.
• Kearns CA, Inouye, DW. 1993. Techniques for pollination biologists. Niwot, Colorado: University Press of Colorado. ISBN: 978-0-87081-281-1.
• Lloyd DG, Schoen DJ. 1992. Self- and cross-fertilization in plants. I. Functional dimensions. International Journal of Plant Sciences 153: 358-369. DOI: https://doi.org/1058-5893/92/5303-0010$02.00
• Lot A, Novelo A, Olvera M, Ramírez-García P. 1999. Catálogo de angiospermas acuáticas de México. México, D.F.: Instituto de Biología. Universidad Nacional Autónoma de México. ISBN: 9683679284.
• Lot A, Zepeda C. 2009. Plantas acuáticas. In: Ceballos G, List R, Garduño G, López- Cano R, Muñozcano-Quintanar MJ, Collado E, San Román JE. eds. La diversidad biológica del Estado de México. Toluca, México: Biblioteca Mexiquense del Bicentenario, Gobierno del Estado de México, pp. 229-241. ISBN: 9789708260633.
• Lovett-Doust J, Cavers PB. 1982. Biomass allocation in hermaphrodite flowers. Canadian Journal of Botany 60: 2530-2534. DOI: https://doi.org/10.1139/b82-306
• Maia ACD, de Lima CT, Navarro DMDAF, Chartier M, Giulietti AM, Machado IC. 2014. The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators. Phytochemistry 103: 67-75. DOI: https://doi.org/10.1016/j.phytochem.2014.04.007
• Navarro L, Guitián J. 2002. The role of floral biology and breeding system on the reproductive success of the narrow endemic Petrocoptis viscosa Rothm. (Caryophyllaceae). Biological Conservation 103: 125-132. DOI: https://doi.org/10.1016/S0006-3207(01)00108-2
• Ne’eman G, Dafni A, Potts SG. 1999. A new pollination probability index (PPI) for pollen load analysis as a measure for pollination effectiveness of bees. Journal of Apicultural Research 38: 19-23. DOI: https://doi.org/10.1080/00218839.1999.11100991
• Novelo A, Bonilla-Barbosa J. 1999. Nymphaeaceae. Flora del Bajío y de regiones adyacentes 92: 1-120. Sitio: (acceso mayo 12, 2020).
• Orban I, Bouharmont J. 1995. Reproductive biology of Nymphaea capensis Thunb. var. zanzibariensis (Casp.) Verdc. (Nymphaeaceae). Botanical Journal of the Linnean Society 119: 35-43. DOI: https://doi.org/10.1111/j.1095-8339.1995.tb00727.x
• Pinilla-Gallego MS, Nates-Parra G. 2015. Visitantes florales y polinizadores en poblaciones silvestres de agraz (Vaccinium meridionale) del bosque andino colombiano. Revista Colombiana de Entomología 41, 112-119. Sitio (acceso mayo12, 2020).
• Povilus RA, Losada JM, Friedman WE. 2014. Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms. Annals of Botany 115: 211-226. DOI: https://doi.org/10.1093/aob/mcu235
• Prance GT, Anderson AB. 1976. Studies of the floral biology of neotropical Nymphaeaceae. Acta Amazonica 6: 163-170. DOI: https://doi.org/10.1590/1809-43921976062163
• Primack RB. 1985. Longevity of individual flowers. Annual Review of Ecology and Systematics 16: 15-37. DOI: https://doi.org/10.1146/annurev.es.16.110185.000311
• Raimúndez UE, Ramírez N. 1998. Estrategia reproductiva de una hierba perenne: Hypoxis decumbens (Hypoxidaceae). Revista de Biología Tropical 46: 555-565. Sitio: (acceso mayo12, 2020).
• Ramírez N. 1993. Producción y costo de frutos y semillas entre formas de vida. Biotropica 25: 46. DOI: https://doi.org/10.2307/2388978
• Ramírez N, Berry P. 1993. Producción y costo de frutos y semillas relacionados a los tipos morfológicos de frutos, unidad de dispersión y síndromes de dispersión. Ecotrópicos 6: 42-61. Sitio (acceso mayo 12, 2020).
• Ramsey M. 1993. Floral morphology, biology and sex allocation in disjunct populations of Christmas bells (Blandfordia grandiflora, Liliaceae) with different breeding systems. Australian Journal of Botany 41, 749-762. DOI: https://doi.org/10.1071/BT9930749
• Rivera-Hutinel A, Acevedo-Orellana F. 2017. Biología floral y reproductiva de Escallonia pulverulenta (Ruiz et Pav.) Pers. (Escalloniaceae) y su relación con los visitantes florales. Gayana Botanica 74: 82-93. DOI: https://doi.org/10.4067/S0717-66432017005000322
• Rodríguez-Pérez J. 2005. Breeding system, flower visitors and seedling survival of two endangered species of Helianthemum (Cistaceae). Annals of Botany 95: 1229-1236. DOI: https://doi.org/10.1093/aob/mci137
• Ruiz-Zapata T, Kalin-Arroyo M. 1978. Plant reproductive ecology of secondary deciduous forest in Venezuela. Biotropica 19: 221-230. DOI: https://doi.org/10.2307/2387907
• Rzedowski G, Rzedowski J. 2010 Flora fanerogámica del Valle de México (2a ed.). México. Instituto de Ecología A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 978-607-7607-36-6.
• Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG. 1994. Evaluating approaches to the conservation of rare and endangered plants. Ecology 75: 584-606. DOI: https://doi.org/10.2307/1941718
• Schneider EL. 1982. Notes on the floral biology of Nymphaea elegans (Nymphaeaceae) in Texas. Aquatic Botany 12: 197-200. DOI: https://doi.org/10.1016/0304-3770(82)90014-6
• Schneider EL, Chaney T. 1981. The floral biology of Nymphaea odorata (Nymphaeaceae). Southwestern Naturalist 26: 159-165. DOI: https://doi.org/10.2307/3671112
• SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental – Especies nativas de México de flora y fauna silvestres – Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio – Lista de especies en riesgo. Diario Oficial de la Federación. 2da Sección, 30 de diciembre de 2010.
• Sokal RR, Rohlf FJ. 2012. Biometry the principles and practice of statistics in biological research 4a ed. New York, USA: W.H. Freeman and Company. ISBN-13: 978-0-7167-8604-4.
• van der Velde G. 1986. Developmental stages in the floral biology S.L. of dutch Nymphaeaceae (Nymphaea alba L., Nymphaea candida Presl, Nuphar lutea (L.) Sm.). Acta Botanica Neerlandica 35: 111-113. DOI: https://doi.org/10.1111/j.1438-8677.1986.tb00467.x.
• Vogel S. (1990). The role of scent glands in pollination: on the structure and function of osmophores. Washington, D.C.: Smithsonian Institution Libraries and National Science Foundation. ISBN-10: 9999962882.
• Wells H. 1979. Self-fertilization: Advantageous or deleterious? Evolution 33: 252-255. DOI: https://doi.org/10.2307/2407381
• Wiersema JH. 1988. Reproductive biology of Nymphaea (Nymphaeaceae). Annals of the Missouri Botanical Garden 75: 795-804. DOI: https://doi.org/10.2307/2399367
• Williams JH, McNeilage RT, Lettre MT, Taylor ML. 2010. Pollen tube growth and the pollen-tube pathway of Nymphaea odorata (Nymphaeaceae). Botanical Journal of the Linnean Society 162: 581-593. DOI: https://doi.org/10.1111/j.1095-8339.2010.01039.x
• Zepeda C. 2017. Nymphaceae. In: Lot A. ed. Plantas acuáticas mexicanas, una contribución a la flora de México. Vol. II Dicotiledóneas Parte 1. México, D.F.: Instituto de Biología. Universidad Nacional Autónoma de México. pp. 139-154. ISBN: 9786073000574.
How to Cite
Zepeda-GómezC., Cruz-MuciñoE., Burrola-Aguilar C., & Estrada-ZuñigaM. E. (2020). Floral biology, floral visitors, and reproductive system of Nymphaea gracilis Zucc. (Nymphaceae). Botanical Sciences, 98(4), 499-515. https://doi.org/10.17129/botsci.2642