Characterization of fructans from stems of Agave salmiana Otto ex Salm Dyck and A. tequilana F.A.C. Weber in full physiological maturity

keywords: degree of polymerization, maguey mezacalero, maguey tequilero, maguey stems, organic extraction, soluble fiber


Background: The physiology of the raw material in the fructan extraction processes is essential to establish criteria that guarantee a homogeneous quality of the product, thus, the optimal physiological maturity in the Agave species can reduce the variability of its quality.

Questions: Does the full physiological maturity of agaves and the exclusive use of their stem influence the profile of carbohydrates and the average DP of their fructans?

Study species: Agave salmiana Otto ex Salm-Dyck (ASE) y A. tequilana F.A.C. Weber (ATE)

Study site and research period: The study was carried out with heads of maguey mezcalero potosino harvested in ejidal pastures in the municipality of Charcas, San Luis Potosí and heads of maguey tequilero that were harvested in Arandas, Jalisco; during the spring of 2019.

Methods: The average DP of the fructans of ASE and ATE with full physiological maturity and organic extraction process and commercial fructans of A. tequilana (ATC) and chicory (IC) was characterized and estimated by HPTLC, HPLC and HP-SEC.

Results: A DP of 14.46, 16.2, 18.25 and 21.11 was found for IC, ASE, ATC and ATE, respectively. When comparing ASE and ATE, with similar full physiological maturity, the proportion of fructans with DP > 10 was 73.2 and 83.74 %, respectively, was recorded.

Conclusion: The choice of Agave with full physiological maturity and the exclusive use of its stems were confirmed the DP for ASE was confirmed to be 16 and a DP of 21 is presented for the first time for A. tequilana F.A.C. Weber.



Download data is not yet available.
Characterization of fructans from stems of <em>Agave salmiana</em> Otto ex Salm Dyck and<em> A. tequilana</em> F.A.C. Weber in full physiological maturity


NOTA: No hay citas textuales, anexo la literatura citada:

Aires B MR, Azevedo AM. 2017. Fundamentals of biological separation processes. In: Pandey A, Couto TJA. (Eds.) Current Developments in Biotechnology and Bioengineering. Foundations of Biotechnology and Bioengineering. Netherlands: Elsevier, pp. 187-237. DOI:
Aguirre R JR, Charcas S H & Flores F JL. 2001. El Maguey Mezcalero Potosino. Universidad Autónoma de San Luis Potosí y Consejo Potosino de Ciencia y Tecnología: San Luis Potosí S. L. P., México. ISBN: 968767489X
Alvarado C, Camacho R RM, Cejas J & Rodríguez J. 2014. Profiling of commercial Agave fructooligosaccharides using ultrafiltration and high performance thin layer cromatography. Revista Mexicana de Ingeniería Química 13: 417–427.
Arrizon J, Morel S, Gschaedler A & Monsan P. 2010. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chemistry 122: 123–130. DOI:
Babb V M & Haigler CH. 2001. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiology 127: 1234–1242. DOI: http://10.1104/pp.127.3.1234
Camacho R RM. 2016. Fructanos de agave. Retos en la estandarización. Tecnoagave 41: 62-63.
Claassen P AM, Budde M AW, De Ruyter H J, Van Calker M H & Van Es A. 1991. Potential role of pyrophosphate: fructose 6-phosphate phosphotransferase in carbohydrate metabolism of cold stored tubers of Solanum tuberosum cv Bintje. Plant Physiology 95: 1243–1249. DOI: http://10.1104/pp.95.4.1243
García G R, Ortiz B RI, Calderón S M, Bravo M J, Ruiz A BE & González A M. 2018. In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave?: A comparison based on polymerization degree. LWT - Food Science and Technology 92: 380–387. DOI:
Godínez H CI. 2017. Estudios sobre los subproductos de la elaboración del mezcal, y usos alternativos del maguey. Tesis Doctoral. Universidad Autónoma de San Luis Potosí.
Godi?nez H CI, Aguirre R JR & Juárez F BI. 2016a Importancia creciente de los fructanos del maguey. Retos y perspectivas, Tecnoagave 40: 26-29.
Godínez H CI, Aguirre R JR & Juárez F BI. 2016b. Yield and composition of Agave salmiana Otto ex Salm-Dick y A. tequilana F.A.C. Weber fructans. In: A. Mora Gutierrez (Ed.), Sustainable and Integrated use of Agave. CONACyT/CIATEJ/AGARED. Guadalajara, Jalisco, México. pp.153-157. ISBN: 978-607-97421-6-4
Godínez H CI, Aguirre R JR, Juárez F BI, Ortiz P MD & Becerra J J. 2016c. Extraction and characterization of Agave salmiana Otto ex Salm-Dyck fructans. Revista Chapingo Serie Ciencias Forestales y Del Ambiente 22: 59–72. DOI:
Kaur N & Gupta A K. 2002. Aplications of inulin and oligofructose in health and nutrition. Journal of Biosciences, 27: 703-714. DOI:
Livingston DP, Chatterton NJ & Harrison PA. 1993. Structure and quantity of fructan oligomers in oat (Avena spp .). New Phytol 123: 725–734. DOI:
López MG, Mancilla M NA & Mendóza D G. 2003. Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry 51: 7835–7840. DOI: 10.1021/jf030383v
Mancilla M NA & López MG. 2006. Water-soluble carbohydrates and fructan structure patterns fron Agave and Dasylirion species. Journal Agriculture and Food Chemistry 54: 7832–7839. DOI:
Michel C C, Juárez F BI, Aguirre R JR, & Pinos R JM. 2008. Quantitative characterization of nonstructural carbohydrates of mezcal agave (Agave salmiana Otto ex Salm-Dick). Journal of Agricultural and Food Chemistry 56: 5753–5757. DOI:
Moreno V L, Bostyn S, Flores M JL & Camacho R RM. 2017. Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of Agave fructans. Food Chemistry 237: 833–840. DOI:
Moreno V L, Bostyn S, Flores M JL & Camacho R RM. 2019. Comparative data of molecular weight distribution of agave fructans fractions using MALDI-ToF and HPLC-SEC. Data in Brief 24:1–6. DOI:
Olvera C, Castillo E & López M A. 2007. Fructosiltransferasas, fructanas y fructosa. Biotecnología 14: 327–345. DOI:
Pollock C J. 1986. Tansley Review No. 5. Fructans and the metabolism of sucrose in vascular plants. New Phytol 104: 1–24. DOI:
Pollock C J & Cairns A J. 1991. Fructan metabolism in grasses and cereals. Annual Review of Plant Physiology and Plant Molecular Biology 42: 77–101. DOI:
Pollock C J & Jones T. 1979. Seasonal patterns of fructan metabolism in forage grasses. New Phytol 83: 9–15. DOI:
Reynoso P H, Grajales L A, Castillo A A, González G R & Ruiz C MA. 2017. Integration of nano?ltration and spray drying processes for enhancing the purity of powdered fructans from Agave salmiana juice. Powder Technology 322: 96–105. DOI:
Ronkart S N, Blecker CS, Fourmanoir H, Fougnies C, Deroanne C, Van H JC & Paquot M. 2007. Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Analytica Chimica Acta 604: 81–87. DOI:
SAGARPA [Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación]. 2016. Norma Oficial Mexicana NOM-002-SAGARPA-2016, Relativa a las características de sanidad, calidad agroalimentaria, autenticidad, etiquetado y evaluación de la conformidad de los fructanos de agave. Diario Oficial de la Federación. 3ra Sección, 2 de diciembre de 2016.
Wang N & Nobel PS. 1998. Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiology 116: 709–714. DOI:
How to Cite
Regalado Rentería, E., Godínez-Hernández, C. I., Aguirre Rivera, J. R., Camacho Ruíz, R. M., & Juárez Flores, B. I. (2021). Characterization of fructans from stems of Agave salmiana Otto ex Salm Dyck and A. tequilana F.A.C. Weber in full physiological maturity. Botanical Sciences, 99(2), 388-397.