Physiological and microclimatic consequences of variation in agricultural management of maize

keywords: crop ecophysiology, microenvironment, milpa, photosynthesis, water relationships

Abstract

Background: Maize is cultivated under different agricultural management systems, which influence the ecological dynamics of the crop, and therefore the physiology of the plant.

Questions: What is the effect of different agricultural management on the microclimate and the physiology of maize plants?

Studied species: Zea mays L.

Study site and dates: Nacajuca, Tabasco, Mexico; January to April 2017.

Methods: Physiological performance of maize plants and microclimatic variation in the crop area was characterized under three management systems: maize monoculture, maize-bean, and maize-bean-squash intercropping. Each treatment was established in three 100 m2 plots (300 m2 per treatment). Four measurements were taken between days 33 and 99 after maize sowing, to characterize five microclimatic parameters (relative air humidity, air and soil temperature, vapor-pressure deficit and soil volumetric water content) and nine physiological parameters (photosynthesis, transpiration, water use efficiency, stomatal conductance, electron transport rate, quantum efficiency of photosystem II, non-photochemical quenching, foliar water potential and chlorophyll content).

Results: Maximum soil temperature was up to 4.4 ºC less in the maize-bean system than in the monoculture at 15:00 h; soil in the maize-bean-squash intercropping retained up to 45 % more water than the monoculture throughout the day. Photosynthesis and electron transport rate in the maize-bean intercropping was up to 32 % higher than in the monoculture. The highest non-photochemical quenching and transpiration rate were observed in the maize-bean-squash system.

Conclusions: The maize-bean and maize-bean-squash combination provides maize plants with lower soil temperature and higher water availability, allowing them better physiological performance compared to monoculture.

Downloads

Download data is not yet available.
Physiological and microclimatic consequences of variation in agricultural management of maize

References

Aguilar J, Illsley C, Marielle C. 2003. Los sistemas agrícolas de maíz y sus procesos técnicos. In: Galicia G, Esteva G, Marielle C. eds. Sin maíz no hay país. México: Consejo Nacional para la Cultura y las Artes: Dirección General de Culturas Populares e Indígenas, Museo Nacional de Culturas Populares. pp. 83-122. ISBN 970-35-0434-5
Bawa A, Addai I, Kugbe J. 2015. Evaluation of some genotypes of maize (Zea mays L.) for tolerance to drought in Northern Ghana. Research in Plant Biology 5:19–29. ISSN:2231-5101
CONABIO. 2011. Base de datos del proyecto global Recopilación, generación, actualización y análisis de información acerca de la diversidad genética de maíces y sus parientes silvestres en México. México, D.F.
Crafts-Brandner SJ, Salvucci ME. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology 129:1773-1780. DOI: https://doi.org/10.1104/pp.002170
Das A, Ghosh PK, Lal R, Saha R, Ngachan S. 2014. Soil Quality Effect of Conservation Practices in Maize - Rapeseed Cropping System in Eastern Himalaya. Land Degradation & Development 28:1862-1874. DOI: https://doi.org/10.1002/ldr.2325
Díaz P, Ruíz C, Medina G, Cano G, Serrano A. 2006. Estadísticas climatológicas básicas del estado de Tabasco. Veracruz, México: Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias. ISBN: 9704300190.
Farhad W, Cheema MA, Hammad HM, Saleem MF, Fahad S, Abbas F, Khosa I, Bakhat HF. 2018. Influence of composted poultry manure and irrigation regimes on some morpho-physiology parameters of maize under semiarid environments. Environmental Science and Pollution Research 25:19918-19931. DOI: https://doi.org/10.1007/s11356-018-2125-9
Francis CA. 1986. Multiple cropping systems. London: Macmillan Publishers. ISBN: 9780029486108
Ghanbari A, Dahmardeh M, Siahsar BA, Ramroudi M. 2010. Effect of maize (Zea mays L .) - cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. Journal of Food Agriculture and Environment 8:102-108. DOI: https://doi.org/10.1234/4.2010.1458
Gleason SM, Wiggans DR, Bliss CA, Comas LH, Cooper M, DeJonge KC, Young JS, Zhang H. 2017. Coordinated decline in photosynthesis and hydraulic conductance during drought stress in Zea mays. Flora 227:1–9. DOI: https://doi.org/10.1016/j.flora.2016.11.017
González-Merino A, Ávila-Castañeda JF. 2014. El maíz en Estados Unidos y en México. Hegemonía en la producción de un cultivo. Argumentos 27:215-237. ISSN 0187-5795
Hayat F, Ahmed MA, Zarebanadkouki M, Javaux M, Cai G, Carminati A. 2020. Transpiration Reduction in Maize (Zea mays L) in Response to Soil Drying. Frontiers in Plant Science 10:1–8. DOI: https://doi.org/10.3389/fpls.2019.01695
Hoy CW. 2015. Agroecosystem health, agroecosystem resilience, and food security. Journal of Environmental Studies and Sciences 5:623–635. DOI: https://doi.org/10.1007/s13412-015-0322-0
INIFAP. 2019. Datos climáticos diarios. Laboratorio Nacional de Modelaje y Sensores Remotos. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).
Instituto Nacional de Estadística y Geografía (INEGI). 2005. Cuaderno Estadístico Municipal de Nacajuca, Tabasco. México.
International Grains Council. 2019. Five-year baseline projections of supply and demand for wheat, maize (corn), rice and soyabeans to 2023/24. London.
Jones H. 1992. Plant and microclimate: a quantitative approach to environmental plant physiology. Cambridge: Cambridge University Press.
Kim S, Gitz D, Sicher R, Baker J, Timlin D, Reddy V. 2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany 61:224-236. DOI: https://doi.org/10.1016/j.envexpbot.2007.06.005
Latati M, Bargaz A, Belarbi B, Lazali M, Benlahrech S, Tellah S, Kaci G, Drevon JJ, Ounane SM. 2016. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. European Journal of Agronomy 72:80-90. DOI: https://doi.org/10.1016/j.eja.2015.09.015
Leakey ADB, Uribelarreà M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP. 2006. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology 140:779-790. DOI: https://doi.org/10.1104/pp.105.073957
LI-COR Technical Solutions. 2015. Calculating Daily Light Integral (DL ). LI-COR:1–2.
Mariaca R. 2011. La milpa. Ecofronteras 43:22–26.
Maxwell K, Johnson G. 2000. Chlorophyll fluorescence - a practical guide. Journal of experimental botany 51:659-668. DOI: https://doi.org/10.1093/jexbot/51.345.659
Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Liwenga E, Pradhan P, Rivera-Ferre MG, Sapkota T, Tubiello, FN. 2019. Food security. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J, eds. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In press: IPCC. pp. 437–550.
Midmore DJ, Berrios D, Roca J. 1988. Potato (Solanum spp.) in the hot tropics V. Intercropping with maize and the influence of shade on tuber yields. Field Crops Research 18:159-176. DOI: https://doi.org/10.1016/0378-4290(88)90006-8
Murray-Tortarolo GN, Jaramillo VJ, Larsen J. 2018. Food security and climate change: the case of rainfed maize production in Mexico. Agricultural and Forest Meteorology 253-254:124-131. DOI: https://doi.org/10.1016/j.agrformet.2018.02.011
Nigh R, Diemont SAW. 2013. The Maya milpa: Fire and the legacy of living soil. Frontiers in Ecology and the Environment. 11:SUPPL 1. DOI: https://doi.org/10.1890/120344
Onset. 2018. Soil Moisture Smart Sensor (S-SMx-M005) Manual. Bourne.
Paliwal RL, Granados G, Renée H, Violic A. 2001. El maíz en el trópico: mejoramiento y producción. Roma: Organización de las Naciones Unidas Para la Agricultura y la Alimentación.
Panel Intergubernamental de Expertos Sobre el Cambio Climático. 2014. Cambio Climático 2014. Impactos, adaptaciones y vulnerabilidad. B. Field C, R. Barros V, Jon Dokken D, J. Mach K, D. Mastrandrea M, eds. Siuza: Panel Intergubernamental de Expertos Sobre el Cambio Climático.
Pino M, Terry E, Leon A, Marrero P, F S. 2000. Respuestas de las plantas de tomate a la modificación de algunas variables del microclima en un sistema protegido con sombra natural. Cultivos Tropicales 21:33-36.
Ren Y, Liu J, Wang Z, Zhang S. 2016. Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. European Journal of Agronomy 72:70-79. DOI: https://doi.org/10.1016/j.eja.2015.10.001
Servicio de Información Agroalimentaria y Pesquera (SIAP). 2019. Estadística de producción agrícola. México: Secretaría de Agricultura y Desarrollo Rural. Gobierno de México.
Taiz L, Zeiger E. 2002. Plant Physiology. Tercera ed. Inglaterra: Sinauer Associates.
Wang X, Deng X, Pu T, Song C, Yong T, Yang F, Sun X, Liu W, Yan Y, Du J, Liu J.
Su K, Yang W. 2017. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research 204:12-22. DOI: https://doi.org/10.1016/j.fcr.2016.12.020
Weerarathne LVY, Marambe B, Chauhan BS. 2017. Intercropping as an effective component of integrated weed management in tropical root and tuber crops: A review. Crop Protection 95:89-100. DOI: https://doi.org/10.1016/j.cropro.2016.08.010
Wei S, Wang X, Shi D, Li Y, Zhang J, Liu P, Zhao B, Dong S. 2016. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. Plant Physiology and Biochemistry 105:118-128. DOI: https://doi.org/10.1016/j.plaphy.2016.04.007
Xu W, Liu C, Wang K, Xie R, Ming B, Wang Y. 2017. Research Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops 212:126-134. DOI: https://doi.org/10.1016/j.fcr.2017.05.006
Yang Z, Sinclair TR, Zhu M, Messina CD, Cooper M, Hammer GL. 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany 78:157-162.
Yu C, Hui D, Deng Q, Wang J, Reddy KC, Dennis S. 2016. Responses of corn physiology and yield to six agricultural practices over three years in middle Tennessee. Scientific Reports 6: 27504. DOI: https://doi.org/10.1038/srep27504
Published
2020-10-27
How to Cite
Pérez-Hernández, R. G., Cach-Pérez, M. J., Aparacio-Fabre, R., Van der Wal, H., & Rodríguez-Robles, U. (2020). Physiological and microclimatic consequences of variation in agricultural management of maize . Botanical Sciences, 99(1), 132-148. https://doi.org/10.17129/botsci.2640
Section
PHYSIOLOGY / FISIOLOGÍA