Seed and seedling density of Zanthoxylum fagara in México and Zanthoxylum coco in Argentina: influence of distance to vegetation border and plants under which they occur

keywords: chaco serrano, coco, colima, habitat fragmentation, tamaulipan thornscrub

Abstract

Background: Plant distribution depends, partially on dispersers that transport seeds to suitable habitats and the presence of other plants that facilitate or inhibit germination and establishment. It is important to determine how these factors influence plant distribution in vegetation and include such information in management plans.

Hypotheses: Seeds and seedlings of the studied species will differ under tree species and position with respect to the vegetation edge. Higher seed and seedling density is expected under species of animal dispersed trees and in the edges of fragments.

Methods: We carried out a direct count of seeds and seedlings of Zanthoxylum fagara (L.) Sarg. in North America and Zanthoxylum coco Gillies ex Hook.f. & Arn. in South America under the canopy of shrubs inside and at the edge of remnant vegetation.

Results: For both species, seed density was similar at the edge and inside vegetation fragments. Z. fagara seedling density was higher at the edge than 40 m inside the scrub, also higher under trees dispersed by animals. For Z. coco no seedling density differences were found at edge or inside vegetation fragments.

Conclusions: For both species, seed dispersers do not appear to be important, as seeds had similar seed density in edge and inside vegetation. However, they might have an effect on Z. fagara regeneration, as there was higher seedlings density at the edge than inside. Higher light at edge might promote regeneration of this species. For Z. coco there does not appear to be an effect of dispersers on regeneration.

Downloads

Download data is not yet available.
Seed and seedling density of Zanthoxylum fagara in México and Zanthoxylum coco in Argentina: influence of distance to vegetation border and plants under which they occur

References

Aguilar R, Cristóbal?Pérez EJ, Balvino?Olvera FJ, de Jesús Aguilar?Aguilar M, Aguirre?Acosta N, Ashworth L, Lobo JA, Martén?Rodríguez S, Fuchs EJ, Sanchez?Montoya G, Bernardello G, Quesada M. 2019. Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecology Letters 22: 1163–1173. DOI: https://doi.org/10.1111/ele.13272
Bacles CF, Lowe AJ, Ennos RA. 2006. Effective seed dispersal across a fragmented landscape. Science 311: 628–628. DOI: https://doi.org/10.1126/science.1121543
Cheib AL, Garcia QS. 2012. Longevity and germination ecology of seeds of endemic Cactaceae species from high-altitude sites in south-eastern Brazil. Seed Science Research 22: 45–53. DOI: https://doi.org/10.1017/S0960258511000298
Clark D. 1981. Foraging patterns of black rats across a desert-montane forest gradient in the Galapagos islands. Biotropica, 3: 182–194. DOI: https://doi.org/10.2307/2388123
Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Nunez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP. 2002. Beta-diversity in tropical forest trees. Science 295: 666–669. DOI: https://doi.org/10.1126/science.1066854
Dellafiore CM. 2016. Dispersión legítima de semillas por aves en el bosque y matorral serrano de la provincia de Córdoba. European Scientific Journal 12: 56–64. DOI: https://doi.org/10.19044/esj.2016.v12n18p56
Díaz Vélez MC, Ferreras AE, Silva WR, Galetto L. 2017. Does avian gut passage favour seed germination of woody species of the Chaco Serrano Woodland in Argentina? Botany 95: 493–501. DOI: https://doi.org/10.1139/cjb-2016-0243
Díaz Vélez MC, Silva WR, Pizo MA, Galetto L. 2015. Movement patterns of frugivorous birds promote functional connectivity among Chaco Serrano woodland fragments in Argentina. Biotropica 47: 475–483. DOI: https://doi.org/10.1111/btp.12233
Flores J, Jurado E. 2003. Are nurse-protégé interactions more common among plants from arid environments? Journal of Vegetation Science 14: 911–916. DOI: https://doi.org/10.1111/j.1654-1103.2003.tb02225.x
Franco-Pizaña J, Fulbright TE, Gardiner DT. 1995. Spatial relations between shrubs and Prosopis glandulosa canopies. Journal of Vegetation Science 6: 73–78. DOI: https://doi.org/10.2307/3236258
García E. 1988. Modificaciones al sistema de clasificación climática de Köppen. México, D.F.: Instituto de Geografía-UNAM. ISBN 970-32-1010-4
Giorgis MA, Cingolani AM, Chiarini F, Chiapella J, Barboza G, Ariza Espinar L, Morero R, Gurvich DE, Tecco PA, Subils R, Cabido M. 2011. Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina. Kurtziana 36: 9–43.
God??nez-Alvarez H, Valiente-Banuet A. 1998. Germination and early seedling growth of Tehuacan Valley cacti species: the role of soils and seed ingestion by dispersers on seedling growth. Journal of Arid Environments 39: 21–31. DOI: https://doi.org/10.1006/jare.1998.0376
Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damsche EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052. DOI: https://doi.org/10.1126/sciadv.1500052
Harper JL. 1977. Population Biology of Plants. London: Academic Press. ISBN: 0-12-325850-2
Heleno RH, Olesen JM, Nogales M, Vargas P, Traveset A. 2013. Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proceedings of the Royal Society B: Biological Sciences 280: 20122112. DOI: https://doi.org/10.1098/rspb.2012.2112
Herrera CM, Jordano P, Lopez-Soria L, Amat JA. 1994. Recruitment of a mast?fruiting, bird?dispersed tree: bridging frugivore activity and seedling establishment. Ecological monographs 64: 315–344. DOI: https://doi.org/10.2307/2937165.
Herrera JM, Garcia D. 2010. Effects of forest fragmentation on seed dispersal and seedling establishment in ornithochorous trees. Conservation Biology 24; 1089–1098. DOI: https://doi.org/10.1111/j.1523-1739.2010.01459.x
Huxel GR, Hastings A. 1999. Habitat loss, fragmentation, and restoration. Restoration Ecology 7: 309–315. DOI: https://doi.org/10.1046/j.1526-100X.1999.72024.x
Jiménez-Pérez J, Alanís-Rodríguez E, Aguirre-Calderón Ó, Pando-Moreno M, González-Tagle M. 2009. Análisis sobre el efecto del uso del suelo en la diversidad estructural del matorral espinoso tamaulipeco. Madera y Bosques 15: 5–20.
Jordan P, Herrera CM. 1995. Shuffling the offspring: uncoupling and spatial discordance of multiple stages in vertebrate seed dispersal. Ecoscience 2: 230–237. DOI: https://doi.org/10.1080/11956860.1995.11682288
Jurado E, Estrada E, Moles A. 2001. Characterizing plant attributes with particular emphasis on seeds in Tamaulipan thornscrub in semi-arid Mexico. Journal of Arid Environments 48: 309–321. DOI: https://doi.org/10.1006/jare.2000.0762
Kollmann J, Schneider B. 1999. Landscape structure and diversity of fleshy-fruited species at forest edges. Plant Ecology 144: 37–48. DOI: https://doi.org/10.1023/A:1009880506495
Laurance WF. 2008. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biological Conservation 141: 1731–1744. DOI: https://doi.org/10.1016/j.biocon.2008.05.011
López de Casenave J, Pelotto JP, Caziani SM, Mermoz M, Protomastro J. 1998. Responses of avian assemblages to a natural edge in a Chaco semiarid forest in Argentina. The Auk 115: 435–435. DOI: https://doi.org/10.2307/4089201
Luti R, Bertrán M, Galera FM, Müller N, Berzal M, Nores N, Herrera M, Barrera YJC. 1979. Vegetación. In: Vázquez J, Miatello R, Roqué M, eds. Geografía Física de la
Provincia de Córdoba. Buenos Aires: Editorial Boldt, pp. 297–368.
Marañón T, Camarero JJ, Castro J, Díaz M, Espelta JM, Hampe A, Jornado P, Valladares F, Verdú M, Zamora R. 2004. Heterogenidad ambiental y nicho de regeneración. In: Valladares F, ed. Ecología del Bosque Mediterráneo en un Mundo Cambiante. Madrid: Ministerio de Ambiente EGRAF, pp. 69–99. ISBN: 978-84-8014-738-5
Mora-Donjuán CA, Alanís-Rodríguez E, Jiménez-Pérez J, González-Tagle MA, Yerena- Yamallel J, Cuellar-Rodríguez LG. 2013. Estructura, composición florística y diversidad del matorral espinoso tamaulipeco, México. Ecología Aplicada 12: 29–34.
Moreno ML, Bernaschini ML, Pérez-Harguindeguy N, Valladares G. 2014. Area and edge effects on leaf-litter decomposition in a fragmented subtropical dry forest. Acta Oecologica 60: 26–29. DOI: https://doi.org/10.1016/j.actao.2014.07.002
Nogales M, González-Castro A, Rumeu B, Traveset A, Vargas P, Jaramillo P, Heleno RH. 2017. Contribution by vertebrates to seed dispersal effectiveness in the Galápagos Islands: a community-wide approach. Ecology 98: 201–228. DOI: https://doi.org/10.1002/ecy.1816
Padilla Rangel H. 2013. Efecto de la vegetación sobre la avifauna de una porción de matorral espinoso tamaulipeco, en el municipio de Linares, N.L. MSc. Thesis. Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León.
Pando-Moreno M, Jurado E, Castillo D, Flores J, Estrada E. 2010. Physical crust does not affect soil seed bank. Arid Land Research and Management 24: 263–266. DOI: https://doi.org/10.1080/15324981003744966
Pardini R, Nichols E, Püttker T. 2017. Biodiversity response to habitat loss and fragmentation. Encyclopedia of the Anthropocene 3: 229–239. DOI: http://dx.doi.org/B978-0-12-809665-9.09824-4.
Pillatt N, Pillatt N, Franco ETH, Coelho GC. 2010. Dry artificial perches and the seed rain in a subtropical riparian forest. Revista Brasileira de Biociências 8: 246–252. DOI: http://dx.doi.org/10.4067/S0717-92002012000100004
Ponce AM, Grilli G, Galetto L. 2012. Frugivoría y remoción de frutos ornitócoros en fragmentos del bosque chaqueño de Córdoba (Argentina). Bosque (Valdivia) 33: 33–41. DOI: http://dx.doi.org/10.4067/S0717-92002012000100004
Reid N, Marroquín J, Beyer MP. 1990. Utilization of shrubs and trees for browse, fuelwood and timber in the Tamaulipan thornscrub, northeastern Mexico. Forest Ecology and Management 36: 61–79. DOI: https://doi.org/10.1016/0378-1127(90)90064-I
Ren X, Lv Y, Li M. 2017. Evaluating differences in forest fragmentation and restoration between western natural forests and southeastern plantation forests in the United States. Journal of Environmental Management 188: 268–277. DOI: https://doi.org/10.1016/j.jenvman.2016.11.068
Rey PJ, Alcántara JM. 2014. Effects of habitat alteration on the effectiveness of plant-avian seed dispersal mutualisms: consequences for plant regeneration. Perspectives in Plant Ecology, Evolution and Systematics 16: 21–31. DOI: https://doi.org/10.1016/j.ppees.2013.11.001
Rodríguez-Pérez J, Larrinaga AR, Santamaría L. 2012. Effects of frugivore preferences and habitat heterogeneity on seed rain: a multi-scale analysis. Public Library of Science One 7(3): e33246. DOI: https://doi.org/10.1371/journal.pone.0033246
Seifert B, Fischer M. 2010. Experimental establishment of a declining drygrassland flagship species in relation to seed origin and target environment. Biological Conservation 143: 1202–1211. DOI: https://doi.org/10.1016/j.biocon.2010.02.028
Verga EG, Peluc SI, Landi M, Galetto L. 2018. Efecto de la fragmentación del bosque sobre las fuentes potenciales de alimento para aves en Córdoba. Ecología Austral 28: 339–352. DOI: https://doi.org/10.25260/EA.18.28.2.0.429.
Voigt FA, Farwig N, Johnson SD. 2011. Interactions between the invasive tree Melia azedarach (Meliaceae) and native frugivores in South Africa. Journal of Tropical Ecology 27: 355–363. DOI: https://doi.org/10.1017/S0266467410000702
Watson IW, Westoby M, Holm A. McR.1997. Demography of two shrub species from an arid grazed ecosystem in Western Australia 1983-93. Journal of Ecology 85: 815–832. DOI: https://www.jstor.org/stable/2960604
Williams-Linera G, Álvarez-Aquino C, Hernández-Ascención E, Toledo M. 2011. Early successional sites and the recovery of vegetation structure and tree species of the tropical dry forest in Veracruz, Mexico. New Forests 42(2): 131–148. DOI: https://doi.org/10.1007/s11056-010-9242-8
Zak MR, Cabido M. 2002. Spatial patterns of the Chaco vegetation of central Argentina: integration of remote sensing and phytosociology. Applied Vegetation Science 5: 213–226. DOI: https://doi.org/10.1111/j.1654-109X.2002.tb00551.x
Zak M, M Cabido, Hodgson JG. 2004. Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biological Conservation 120: 589–598. DOI: https://doi.org/10.1016/j.biocon.2004.03.034
Zou CB, Barnes PW, Archer S, McMurtry CR. 2005. Soil moisture redistribution as a mechanism of facilitation in savanna tree–shrub clusters. Oecologia 145: 32–40. DOI: https://doi.org/10.1007/s00442-005-0110-8
Published
2020-10-27
How to Cite
Valdes-Alameda, R., Jurado, E., Flores, J., Pando-Moreno, M., Estrada, E., & Gurvich, D. E. (2020). Seed and seedling density of Zanthoxylum fagara in México and Zanthoxylum coco in Argentina: influence of distance to vegetation border and plants under which they occur. Botanical Sciences, 99(1), 67-79. https://doi.org/10.17129/botsci.2636
Section
ECOLOGY / ECOLOGÍA