Morpho-anatomical traits of the sycone development phases of Ficus tuerckheimii (subg. Spherosuke, sect. Americanae, Moraceae)

Español

keywords: Idarnes, osmophores, ostiolar bracts, ostiolar ring, Pegoscapus, trichomoids

Abstract

Background: The genus Ficus includes about 850 species, found in tropical areas around the world. Nevertheless, studies on the syconium development has been carrying out only for a low number of these species. In the present study, morpho-anatomical changes along the phase development of the F. tuerckheimii syconium are described.

Question: Do the stages of the syconium development of F. tuerckheimii differ in their morpho-anatomical traits?

Study species: F. tuerckheimii (Moraceae).

Studied site and dates: Veracruz, Mexico (2018-2019).

Methods: Syconia were collected to describe their morphology, anatomy, color, and size during different phenophases. Fixed syconia at different development stages were processed and embedded in paraplast to be described by light microscopy or scanning electron microscopy.

Results: Syconium development phases differed in size, as well as in the color of the syconia wall and the ostiole, particularly in the most critical phases of its interaction with pollinators or dispersers (phases B, D and E). The external bracts of the ostiole and the ostiolar ring presented trichomoids; ostiolar ring had osmophores. Combs and corbicles in the female wasp of Pegoscapus sp. indicate its active role as a pollinator of F. tuerckheimii.

Conclusions: Morpho-anatomical traits in the development syconium phases of F. tuerckheimii are similar to findings previously documented for other species of the genus. However, there are still several aspects that must be explored in more detail to determine their similarity in other populations where the species is found in Mexico and Central America.

Downloads

Download data is not yet available.

Author Biographies

Gabriela Delgado-Pérez, Facultad de Ciencias. Universidad Nacional Autónoma de México

Pasante de Licenciatura Biología

Sonia Vázquez-Santana, Facultad de Ciencias. Universidad Nacional Autónoma de México

Profesora de tiempo completo

Guadalupe Cornejo-Tenorio, Instituto de Investigaciones en Ecosistemas y Sustentabilidad. Universidad Nacional Autónoma de México

Maestra en Ciencias, Técnico Académico Titular B T. C.

Guillermo Ibarra-Manriquez, Español

Investigador Titular C

Morpho-anatomical traits of the sycone development phases of Ficus tuerckheimii (subg. Spherosuke, sect. Americanae, Moraceae)

References

Baijnath H, Ramcharun S.1983. Aspects of pollination and floral development in Ficus capensis Thunb. (Moraceae). Bothalia 14: 883-888.
Baijnath H, Naicker S. 1989. Developmental anatomy of Ficus ingens syconia in relation to its wasp faunula. South African Journal of Botany 55(4): 409-421. DOI:10.1016/S0254-6299(16)31164-4
Berg CC. 1989. Classification and distribution of Ficus. Experientia 45 (7): 605-611. DOI: https://doi.org/10.1007/BF01975677
Berg CC. 1990. Reproduction and evolution in Ficus (Moraceae): Traits connected with the adequate rearing of pollinators. Memoirs of the New York Botanical Garden 55: 169-185.
Berg CC, Corner EJH. 2005. Moraceae: Ficeae. Flora Malesiana Serie I 17(2): 1-702.
Berg CC. 2007. Proposals for treating four species complexes in Ficus subgenus Urostigma section Americanae (Moraceae). Blumea 52: 295-312. DOI: 10.3767/000651907X609034
Bronstein JL, Patel A. 1992. Causes and consequences of within-tree phenological patterns in the Florida strangling fig, Ficus aurea (Moraceae). American Journal of Botany 79(1): 41-48. DOI: 10.2307/2445195
Bronstein JL, Hossaert-McKey M. 1995. Hurricane Andrew and a Florida fig pollination mutualism: resilience of an obligate interaction. Biotropica 27(3): 373-381. DOI: https://www.jstor.org/stable/2388922
Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261: 201-217. DOI: http://dx.doi.org/10.11646/phytotaxa.261.3.1
Clement WL, Weiblen GD. 2009. Morphological evolution in the mulberry family (Moraceae). Systematic Botany 34: 530-552. DOI: https://doi.org/10.1600/036364409789271155
Cook JM, Rasplus JY. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology and Evolution 18 (5): 241-248. DOI: https://doi.org/10.1016/S0169-5347(03)00062-4
Datwyler SL, Weiblen GD. 2004. On the origin of the fig: phylogenetic relationships of Moraceae from ndhF sequences. American Journal of Botany 91(5): 767-777. DOI: https://doi.org/10.3732/ajb.91.5.767
Fan KY, Bain A, Tzeng HY, Chiang YP, Chou LS, Kuo-Huang LL. 2019. Comparative anatomy of the fig wall (Ficus, Moraceae). Botany 97(8): 417-426. DOI: https://doi.org/10.1139/cjb-2018-0192
Galil J, Eisikowitch D. 1968. On the pollination ecology of Ficus sycomorus in East Africa. Ecology 49(2): 259-269. DOI: 10.2307/1934454.
Gibernau M, Hossaert?McKey M, Anstett MC, Kjellberg F. 1996. Consequences of protecting flowers in a fig: a one?way trip for pollinators? Journal of Biogeography 23(4): 425-432. DOI: https://doi.org/10.1111/j.1365-2699.1996.tb00004.x
Grison-Pigé L, Bessière JM, Hossaert-Mckey M. 2002a. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. Journal of Chemical Ecology 28(2): 283-295. DOI: 10.1023/a:1017930023741
Grison-Pigé L, Hossaert-Mckey M, Greeff JM, Bessière JM. 2002b. Fig volatile compounds ? a first comparative study. Phytochemistry 61: 61-71. DOI: 10.1016/s0031-9422(02)00213-3
Hernández-Esquivel K, Piedra-Malagón EM, Cornejo-Tenorio G, Mendoza-Cuenca L, González-Rodríguez A, Ruiz-Sánchez E, Ibarra-Manríquez G. 2020. Unraveling the extreme morphological variation in the neotropical Ficus aurea complex (subgen. Spherosuke, sect. Americanae, Moraceae). Journal of Systematics and Evolution. DOI: 10.1111/jse.12564
Hernández-Sosa A, Saralegui-Boza H. 2001. Contribución al conocimiento de la biología del sicono de Ficus aurea (Moraceae). Revista del Jardín Botánico Nacional 22(1): 45-48. DOI: https://www.jstor.org/stable/42597113
Herre EA. 1996. On overview of studies on a community of Panamanian figs. Journal of Biogeography 23(4): 593-607. https://doi.org/10.1111/j.1365-2699.1996.tb00020.x
Ibarra-Manríquez G, Wendt TL. 1992. Ficus, Subgenus Pharmacosycea (Moraceae) in Veracruz, Mexico. Botanical Sciences 52: 3-29. DOI: https://doi.org/10.17129/botsci.1403.
Ibarra-Manríquez G, Cornejo-Tenorio G, González-Castañeda N, Piedra-Malagón EM, Albino L. 2012. El género Ficus L. (Moraceae) en México. Botanical Sciences 90(4): 389-452. DOI: https://doi:10.17129/botsci.472.
Jousselin E, Rasplus JY, Kjellberg F. 2003. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution 57(6): 1255-1269. DOI: https://doi.org/10.1554/02-445
Kjellberg F, Jousselin E, Bronstein JL, Patel A, Yokoyama J, Rasplus JY. 2001. Pollination mode in fig wasps: the predictive power of correlated traits. Proceedings of the Royal Society of London. Series B: Biological Sciences 268(1472): 1113-1121. DOI: https://doi.org/10.1098/rspb.2001.1633
Korine C, Kalko EKV, Herre EA. 2000. Fruit characteristics and factors that affect fruit removal in a Panamanian community of strangler figs. Oecologia 123(4): 560-568. DOI: https://doi.org/10.1007/PL00008861
Lomáscolo SB, Speranza P, Kimball RT. 2008. Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia 156: 783-796. DOI: 10.1007/s00442-008-1023-0
Lomáscolo SB, Levey DJ, Kimball RT, Bolker BM, Alborn HT. 2010. Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences of the United States of America 107: 14668-14672. DOI: https://doi.org/10.1073/pnas.1008773107
Machado AFP, Matos A, Espolador CAE. 2013. Secretory structures at syconia and flowers of Ficus enormis (Moraceae): A specialization at ostiolar bracts and the first report of inflorescence colleters. Flora-Morphology, Distribution, Functional Ecology of Plants 208(1): 45-51. DOI: https://doi.org/10.1016/j.flora.2012.12.005
Machado C, Robbins N, Gilbert MTP, Herre EA. 2005. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences of the United States of America 102(1): 6558-6565. DOI: https://doi.org/10.1073/pnas.0501840102
Márquez-Guzmán J, Wong JG, Pérez-Pacheco M, López ML, Murguía G, Collazo, M. 2016 Técnicas de Laboratorio para el Estudio del Desarrollo de Angiospermas. 1ra. Edición. Universidad Nacional Autónoma de México. Ciudad de México. ISBN: 978-607-02-8252-2
Molbo D, Machado CA, Sevenster JG, Keller L, Herre EA. 2003. Cryptic species of fig-pollinating wasps: Implications for the evolution of the fig–wasp mutualism, sex allocation, and precision of adaptation. Proceedings of the National Academy of Sciences of the United States of America 100(10): 5867-5872. DOI: https://doi.org/10.1073/pnas.0930903100
Newton LE, Lomo A. 1979. The pollination of Ficus vogelii in Ghana. Botanical Journal of the Linnean Society 78(1): 21-30. DOI: 10.1111/j.1095-8339.1979.tb02183.x
Pederneiras LC, Carauta JPP, Romaniuc-Neto S, MansanoVDF. 2015. An overview of the infrageneric nomenclature of Ficus (Moraceae). Taxon 64(3): 589-594.
Piedra-Malagón EM, Hernández-Ramos B, Mirón-Monterrosas A, Cornejo-Tenorio G, Navarrete-Segueda A, Ibarra-Manríquez G. 2019. Syconium development in Ficus petiolaris (Ficus, sect. Americanae, Moraceae) and the relationship with pollinator and parasitic wasps. Botany 97(3): 190-203. DOI: https://doi.org/10.1139/cjb-2018-0095
POWO 2019. Plants of the World Online. Royal Botanic Gardens, Kew. Published on the Internet. http://www.plantsoftheworldonline.org. Fecha de último acceso: 30 de marzo 2020.
R Core Team. 2018. R: A language and environment for statistical computing.
Ramírez W. 1970. Host specificity of fig wasps. Evolution 24: 680-691. DOI: 10.1111/j.1558-5646.1970.tb01804.x
Ramírez W. 1974. Coevolution of Ficus and Agaonidae. Annals of the Missouri Botanical Garden 61: 770-780. DOI: https://www.jstor.org/stable/2395028
Shanahan M, So S, Compton SG, Corlett R. 2001. Fig-eating by vertebrate frugivores: a global review. Biological Reviews 76(4): 529-572. https://doi.org/10.1017/S1464793101005760
Smith CM, Bronstein JL. 1996. Site variation in reproductive synchrony in three neotropical figs. Journal of Biogeography 23(4): 477-486. DOI: https://doi.org/10.1111/j.1365-2699.1996.tb00009.x
Verkerke W. 1986. Anatomy of Ficus ottoniifolia (Moraceae) syconia and the role in the fig-fig wasp simbiosis. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen/C 89(4): 443-469.
Verkerke W. 1987. Syconial anatomy of Ficus asperifolia (Moraceae), a gynodioecious tropical fig. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen/C 90: 461-492.
Verkerke W. 1988. Sycone morphology and its influence on the flower structure of Ficus sur (Moraceae). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen/C 91: 319-344.
Verkerke W. 1989. Structure and function of the fig. Experientia 45(7): 612-622. DOI: https://doi.org/10.1007/BF01975678
Weiblen GD. 2002: How to be a fig wasp. Annual Review of Entomology 47: 299-330. https://doi.org/10.1146/annurev.ento.47.091201.145213
Wiebes JT. 1995. The New World Agaoninae (pollinators of Ficus). Verhandelingen Afdeling Natuurkunde, Tweede Reeks, Deel 94. Koninklijke Nederlandse Akademie van Wetenschappen. Amsterdam, The Netherlands. ISBN: 0-444-85798-2.
Zhang G, Song Q, Yang D. 2006. Phenology of Ficus racemosa in Xishuangbanna, Southwest China. Biotropica 38(3): 334-341. DOI: 10.1111/j.1744-7429.2006.00150.x
Published
2020-10-06
How to Cite
Delgado-PérezG., Vázquez-SantanaS., Cornejo-TenorioG., & Ibarra-ManriquezG. (2020). Morpho-anatomical traits of the sycone development phases of Ficus tuerckheimii (subg. Spherosuke, sect. Americanae, Moraceae). Botanical Sciences, 98(4), 570-583. https://doi.org/10.17129/botsci.2631
Section
STRUCTURAL BOTANY / BOTÁNICA ESTRUCTURAL