In silico identification and expression analysis of Metal-nicotianamine transporter (YSL3) and Oligopeptide transporter 3 (OPT3) under Cd stress in Brassica oleracea var. acephala

keywords: Bioinformatics, gene expression, heavy metals, uncharacterized protein


Background: Metal-nicotianamine transporter (YSL) family protein belongs to the oligopeptide heavy metal transporter group, as characterized in Arabidopsis thaliana. Oligopeptide transporters (OPTs) are a group of membrane-localized proteins, involved in different transport mechanisms, contributing to nitrogen mobilization, glutathione transport and long-distance metal distribution. Metal-nicotianamine transporter gene 3 (YSL3) incorporates the oligopeptide transporter domain, found to transfer several heavy metals in diverse plant species, and among them cadmium transport in Brassica oleracea.

Objective: To evaluate and confirm the expression of Metal-nicotianamine transporter (YSL3) under cadmium stress.

Studied species: Brassica oleracea var. acephala

Study site and dates: Brassica oleracea var. acephala samples were collected from Blagaj region, Bosnia and Herzegovina.

Methods: Through a simple bioinformatic approach the interactome partner of Metal-nicotianamine transporter (YSL3) was discovered and annotated. Oligopeptide transporter 3 (OPT3) and Metal-nicotianamine transporter (YSL3) genes were checked for expression levels under cadmium stress.

Results: We have identified a strong interacting partner of YSL3, later confirmed as Oligopeptide transporter 3 (OPT3) protein in Brassica oleracea. The in vitro expression analysis by using a qRT-PCR revealed a significant upregulation of YSL3 and OPT3, during Cd stress.

Conclusions: These findings indicate that the represented in-silico approach, followed by in vitro gene expression study, successfully confirmed YSL3 and identified OPT3 as a new gene, in correlation to cadmium stress.


Download data is not yet available.
In silico identification and expression analysis of Metal-nicotianamine transporter (YSL3) and Oligopeptide transporter 3 (OPT3) under Cd stress in <em>Brassica oleracea</em> var. <em>acephala</em>


Ahmad, P., Sarwat, M., Bhat, N. A., Wani, M. R., Kazi, A. G., & Tran, L. S. P. 2015. Alleviation of cadmium toxicity in Brassica juncea L.(Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PloS one, 10(1). https://doi: 10.1371/journal.pone.0114571
Balkaya, A., & Yanmaz, R. 2005. Promising kale (Brassica oleracea var. acephala) populations from Black Sea region, Turkey. New Zealand Journal of Crop and Horticultural Science, 33(1), 1-7. https://doi:10.1080/01140671.2005.9514324
Benavides, M. P., Gallego, S. M., & Tomaro, M. L. 2005. Cadmium toxicity in plants. Brazilian journal of plant physiology, 17(1), 21-34.
Brulle, F., Bernard, F., Vandenbulcke, F., Cuny, D., & Dumez, S. 2014. Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses. Ecotoxicology, 23(3), 459-471. https://doi: 10.1007/s10646-014-1209-7
Cagnac, O., Bourbouloux, A., Chakrabarty, D., Zhang, M. Y., & Delrot, S. 2004. AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiology, 135(3), 1378-1387. https://doi:10.1104/pp.104.039859
Chen, C., Cao, Q., Jiang, Q., Li, J., Yu, R., & Shi, G. 2019. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. BMC plant biology, 19(1), 35.
Chen, X., Wang, J., Shi, Y., Zhao, M. Q., & Chi, G. Y. 2011. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botanical studies, 52(1).
Cheng, F., Liu, S., Wu, J., Fang, L., Sun, S., Liu, B., ... & Wang, X. 2011. BRAD, the genetics and genomics database for Brassica plants. BMC plant biology, 11(1), 136. https://doi: 10.1186/1471-2229-11-136
Dutta, P., Karmakar, A., Majumdar, S., & Roy, S. 2018. Klebsiella pneumoniae (HR1) assisted alleviation of Cd (II) toxicity in Vigna mungo: a case study of biosorption of heavy metal by an endophytic bacterium coupled with plant growth promotion. Euro-Mediterranean Journal for Environmental Integration, 3(1), 27. https://doi:10.1007/s41207-018-0069-6
Dutta, S., Mitra, M., Agarwal, P., Mahapatra, K., De, S., Sett, U., & Roy, S. 2018. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant signaling & behavior, 13(8), e1460048. https:/doi:10.1080/15592324.2018.1460048
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. 2017. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in plant science, 8, 1147.
Feng, S., Tan, J., Zhang, Y., Liang, S., Xiang, S., Wang, H., & Chai, T. 2017. Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in Solanum nigrum. Plant cell reports, 36(2), 281-296. https://doi:10.1007/s00299-016-2079-7
Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., ... & Jensen, L. J. 2012. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic acids research, 41(D1), D808-D815. https://doi: 10.1093/nar/gks1094
Franzke, A., M. A. Lysak, I. A. Al-Shehbaz, M. A. Koch and K. MµMmenhoff. 2011. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends in plant science 16(2); 108-116. https://doi:10.1016/j.tplants.2010.11.005
Gall, J. E., Boyd, R. S., & Rajakaruna, N. 2015. Transfer of heavy metals through terrestrial food webs: a review. Environmental monitoring and assessment, 187(4), 201. https://doi:10.1007/s10661/015/4436/3
Kanehisa, M., & Goto, S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30. https://doi:10.1093/nar/28.1.27
Khan, M.A., Castro?Guerrero, N.A., McInturf, S.A., Nguyen, N.T., Dame, A.N., Wang, J., Bindbeutel, R.K., Joshi, T., Jurisson, S.S., Nusinow, D.A. and Mendoza?Cozatl, D.G. 2018. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. Plant, cell & environment, 41(10),2263-2276. https://doi: 10.1111/pce.13192
Koh, S., Wiles, A. M., Sharp, J. S., Naider, F. R., Becker, J. M., & Stacey, G. 2002. An oligopeptide transporter gene family in Arabidopsis. Plant Physiology, 128(1), 21-29.
Lee, J., Izzah, N. K., Choi, B. S., Joh, H. J., Lee, S. C., Perumal, S., ... & Nou, I. S. 2016. Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA research, 23(1), 29-41.
Mendoza-Cózatl, D. G., Xie, Q., Akmakjian, G. Z., Jobe, T. O., Patel, A., Stacey, M. G., ... & Schroeder, J. I. 2014. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Molecular plant, 7(9), 1455-1469. https://doi:10.1093/mp/ssu067
Morkunas, I., Wo?niak, A., Mai, V. C., Ruci?ska-Sobkowiak, R., & Jeandet, P. 2018. The role of heavy metals in plant response to biotic stress. Molecules, 23(9), 2320.
Nouairi, I., Ammar, W. B., Youssef, N. B., Daoud, D. B. M., Ghorbal, M. H., & Zarrouk, M. 2006. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170(3), 511-519.
Pandey, P., & Tripathi, A. K. 2011. Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. International Journal of Environmental Sciences, 1(5), 1009-1018. Online ISSN : 0976-4402

Parkin, I. A., Koh, C., Tang, H., Robinson, S. J., Kagale, S., Clarke, W. E., ... & Denoeud, F. 2014. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome biology, 15(6), R77. https://doi: 10.1186/gb-2014-15-6-r77.
Raymond A. Wuana and Felix E. Okieimen 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, vol. 2011, Article ID 402647, 20 pages.
Sani Ahmad Jibril, Siti Aishah Hassan, Che Fauziah Ishak, and Puteri Edaroyati Megat Wahab, 2017, Cadmium Toxicity Affects Phytochemicals and Nutrient Elements Composition of Lettuce (Lactuca sativa L.). Advances in Agriculture, vol. 2017, Article ID 1236830, 7 pages,
Sefo, E., Matotan, Z., Knezovi?, Z., & Kari?, L. 2010. Evaluation Of Autochthonous Kale (Brassica Oleracea L. Var. Acephala) Germplasm From Herzegovina Region (Brassica oleracea L. var. acephala). Sjemenarstvo, 27(3-4), 139-154. ISSN 1330-0121 (Tisak)
Stacey, M. G., Patel, A., McClain, W. E., Mathieu, M., Remley, M., Rogers, E. E., ... & Stacey, G. 2008. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant physiology, 146(2), 589-601.
Sun, Deling et al. , 2019, Draft genome sequence of cauliflower (Brassica oleracea L.var. botrytis) provides new insights into the CC genome in Brassica species. Horticulture research. vol. 682. https://doi:10.1038/s41438/019/0164/0
Wang, J. W., Li, Y., Zhang, Y. X., & Chai, T. Y. 2013. Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. Plant cell reports, 32(5), 651-662. https://doi: 10.1007/s00299-013-1398-1
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics, 13(1), 134.
How to Cite
SutkovicJ., KaricA., & YildirimA. (2020). In silico identification and expression analysis of Metal-nicotianamine transporter (YSL3) and Oligopeptide transporter 3 (OPT3) under Cd stress in Brassica oleracea var. acephala. Botanical Sciences, 98(4), 516-523.