Pollen and anther development malfunction in distylous flowers of Palicourea padifolia (Rubiaceae)

keywords: heterostyly, male sterility, Palicourea, pollen development, Rubiaceae, tapetum layer

Abstract

Background: Heterostyly is a genetic polymorphism in which flowers differ between individual plants of a species in heights at which stamens and style are reciprocally positioned. In these species, sexual selection theory predicts that different allocation patterns affect the functioning of polymorphism, enabling the evolutionary transition between heterostyly and dioecy.

Questions: Because heterostyly can transit into dioecy, does anther/pollen development differ between floral morphs (LS and SS) of P. padifolia? Is pollen/anther development malfunction associated with one morph more than the other?

Study species: Palicourea padifolia (Rubiaceae), a distylous plant.

Methods: Tiny floral buds to flowers at anthesis were collected, processed for microphotography, and examined to describe pollen developmental pathways in LS and SS flowers. In addition, we used the TUNEL test to detect programmed cell death.

Results: Stages of normal pollen development are fully described and illustrated in LS and SS flowers. Abnormalities due to tapetal degeneration were observed at various developmental stages; at later stages, SS flowers showed more abnormalities than LS flowers. The TUNEL test showed that degeneration was by programmed cell death.

Conclusions: Along with previous results of asymmetrical fecundity and pollen transfer of morphs in P. padifolia, our study of pollen development indicates that the SS morph was more prone to lose the male function, though male sterility is far from being complete, which it might be an initial step towards functional dioecy.

Downloads

Download data is not yet available.
Pollen and anther development malfunction in distylous flowers of Palicourea padifolia (Rubiaceae)

References

Anderson WR. 1973. A morphological hypothesis for the origin of heterostyly in the Rubiaceae. Taxon 22: 137–142. DOI: https://doi.org/10.2307/1218628
Andersson L, Rova JHE. 1999. The rps16 intron and the phylogeny of the Rubiaceae. Plant Systematics and Evolution 214: 161¬¬–186. DOI: https://www.jstor.org/stable/23643515
Arroyo J, Barrett SCH. 2000. Discovery of distyly in Narcissus (Amaryllidaceae). American Journal of Botany 87: 748–751. DOI: https://doi.org/10.2307/2656861
Avila-Sakar G, Domínguez CA. 2000. Parental effects and gender specialization in a tropical heterostylous shrub. Evolution 54: 866–877. DOI: https://doi.org/10.1111/j.0014-3820.2000.tb00087.x
Baker HG. 1958. Studies in the reproductive biology of West African Rubiaceae. Journal of West African Science Association 4: 9–24.
Barrett SCH. 1990. The evolution and adaptive significance of heterostyly. Trends in Ecology and Evolution 5: 144–148. DOI: https://doi.org/10.1016/0169-5347(90)90220-8
Barrett SCH. 1992. Evolution and function of heterostyly. Springer-Verlag, Berlin, Germany.
Barrett SCH. 2002. The evolution of plants sexual diversity. Nature Genetics 3: 274–284. DOI: https://doi.org/10.1038/nrg776
Barrett SCH. 2019. ‘A most complex marriage arrangement’: recent advances of heterostyly and unresolved questions. New Phytologist 224: 1051–1067. DOI: https://doi.org/10.1111/nph.16026
Barrett SCH, Richards JH. 1990. Heterostyly in tropical plants. Memoirs of the New York Botanical Garden 55: 35–61.
Barrett SCH, Shore JS. 2008. New insights of heterostyly: Comparative biology, ecology, and genetics. In: Franklin-Tong VE, ed. Self-incompatibility in flowering plants. Berlin, German: Springer-Verlag, pp. 3–32.
Barrett SCH, Jesson LK, Baker AM. 2000. The evolution of stylar polymorphisms in flowering plants. Annals of Botany 85: 253–265. DOI: https://doi.org/10.1006/anbo.1999.1067
Barrett SCH, Morgan MT, Husband BC. 1989. The dissolution of a complex polymorphism: the evolution of self-fertilization in tristylous Eichhornia paniculata (Pontederiaceae). Evolution 43: 1398–1416. DOI: https://doi.org/10.1111/j.1558-5646.1989.tb02591.x
Barrett SCH, Ness RW, Vallejo-Marín M. 2009. Evolutionary pathways to self-fertilization in a tristylous plant species. New Phytologist 183: 546–556. DOI: https://doi.org/10.1111/j.1469-8137.2009.02937.x
Bawa KS, Beach JH. 1981. Evolution of sexual systems in flowering plants. Annals of the Missouri Botanical Garden 68: 254–274. DOI: https://doi.org/0.2307/2398798
Bawa KS, Opler PA. 1975. Dioecism in tropical forest trees. Evolution 29: 167–179. DOI: https://doi.org/10.1111/j.1558-5646.1975.tb00824.x
Beach JH, Bawa KS. 1980. Role of pollinators in the evolution of distyly from dioecy. Evolution 34: 1138–1142. DOI: https://doi.org/10.1111/j.1558-5646.1980.tb04055.x
Bremer B, Eriksson T. 2009. Time tree of Rubiaceae: phylogeny and dating the family, subfamilies, and tribes. International Journal of Plant Sciences 170: 766–793. DOI: https://doi.org/10.1086/599077
Bremer B, Andreasen K, Olsson D. 1995. Subfamilial and tribal relationships in the Rubiaceae based on rbcL sequence data. Annals of the Missouri Botanical Garden 82: 383–397. DOI: https://doi.org/10.2307/2399889
Bull-Hereñu K, Ronse De Craene L, Pérez F. 2016. Flower meristematic size correlates with heterostylous morphs in two Chilean Oxalis (Oxalidaceae) species. Flora 221: 14–21. DOI: https://doi.org/10.1016/j.flora.2016.02.009
Carlson ML, Gisler SD, Kelso S. 2008. The role of reproductive assurance in the arctic: a comparative study of a homostylous and distylous species pair. Arctic, Antarctic, and Alpine Research 40: 39–47. DOI: https://doi.org/10.1657/1523-0430(06-080)[CARLSON]2.0.CO;2
Casper BB. 1992. The application of sex allocation theory to heterostylous plants. In Barrett SCH, ed. Evolution and Function of Heterostyly. Berlin, Germany: Springer-Verlag, pp. 209–223.
Castro CC, Oliveira PEAM, Alves MC. 2004. Breeding system and floral morphometry of distylous Psychotria L. species in the Atlantic rain forest, SE Brazil. Plant Biology 6: 755–760. DOI: https://doi.org/10.1055/s-2004-830349
Chautá A, Whitehead S, Amaya-Márquez M, Poveda K. 2017. Leaf herbivory imposes fitness costs mediated by hummingbird and insect pollinators. PLoS ONE 12: e0188408. DOI: https://doi.org/10.1371/journal.pone.0188408
Cohen JI. 2010. “A case to which no parallel exists”: the influence of Darwin’s Different forms of flowers. American Journal of Botany 97: 701–716. DOI: https://doi.org/10.3732/ajb.0900395
Coimbra S, Torrão L, Abreu I. 2004. Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiology and Biochemistry 42: 537–541. DOI: https://doi.org/10.1016/j.plaphy.2004.05.004
Conley CA, Parthasarathy MV, Hanson MR. 1994. Effects of Petunia cytoplasmic male sterile (CMS) cytoplasm on the development of sterile and fertility-restored P. parodi anthers. American Journal of Botany 81: 630–640. DOI: https://doi.org/10.2307/2445739
Consolaro H, Silva SCS, Oliveira PE. 2011. Breakdown of distyly and pin-monomorphism in Psychotria carthagenensis Jacq. (Rubiaceae). Plant Species Biology 26: 24–32. DOI: https://doi.org/10.1111/j.1442-1984.2010.00300.x
Contreras PS, Ornelas JF. 1999. Reproductive conflicts of Palicourea padifolia (Rubiaceae) a distylous shrub of a tropical cloud forest in Mexico. Plant Systematics and Evolution 219: 225–241. DOI: https://doi.org/10.1007/BF00985581
Cuevas-García E, Márquez-Guzmán J, Domínguez CA, Molina-Freaner F. 2005. Evidence of gynodioecy in Kallstroemia grandiflora (Zygophyllaceae): microsporogenesis in hermaphrodite and female plants and lack of reproductive compensation. International Journal of Plant Sciences 166: 481–491. DOI: https://doi.org/10.1086/428759
Darwin C. 1877. The different forms of flowers on plants of the same species. London, UK: Murray.
de Vos JM, Wüest RO, Conti E. 2014. Small and ugly? Phylogenetic analyses of the “selfing syndrome” reveal complex evolutionary monomorphic primrose flowers. Evolution 68: 1042–1057. DOI: https://doi.org/10.1111/evo.12331
de Vos JM, Keller B, Isham ST, Kelso S, Conti E. 2012. Reproductive implications of herkogamy in homostylous primroses: variation during anthesis and reproductive assurance in alpine environments. Functional Ecology 26: 854–865. DOI: https://doi.org/10.1111/j.1365-2435.2012.02016.x
del Carlo S, Buzato S. 2006. Male sterility and reproductive output in distylous Erythroxylum suberosum (Erythroxylaceae). Biological Journal of the Linnean Society 88: 465–474. DOI: https://doi.org/10.1111/j.1095-8312.2006.00634.x
Dessein S, Ochoterena H, de Block P, Lens F, Robbrecht E, Schols P, Smets E, Vinckier S, Huysmans S. 2005. Palynological characters and their phylogenetic signal in Rubiaceae. The Botanical Review 71: 354–414. DOI: https://doi.org/10.1663/00068101(2005)071[0354:PCATPS]2.0.CO;2
Domínguez C, Avila-Sakar G, Vázquez-Santana S, Márquez-Guzmán J. 1997. Morph-biased male sterility in the tropical distylous shrub Erythroxylum havanense (Erythroxylaceae). American Journal of Botany 84: 626–632. DOI: https://doi.org/10.2307/2445899
Dulberger R. 1975. Intermorph structural differences between stigmatic papillae and pollen grains in relation to incompatibility in Plumbaginaceae. Proceedings of the Royal Society of London B 188: 257–274. DOI: https://doi.org/10.1098/rspb.1975.0018
Dulberger R. 1992. Floral polymorphisms and their functional significance in the heterostylous syndrome. In: Barrett, SCH, ed. Evolution and function of heterostyly. Berlin, Germany: Springer-Verlag, pp. 41–84.
Dulberger R, Ornduff R. 2000. Stigma morphology in distylous and non-heterostylous species of Villarsia (Menyanthaceae). Plant Systematics and Evolution 225: 171–184. DOI: https://doi.org/10.1007/BF00985466
El-Ghazaly G, Hysmans S, Smets EF. 2001. Pollen development of Rondeletia odorata (Rubiaceae). American Journal of Botany 88: 14–30. DOI: https://doi.org/10.2307/2657122
Erdtman G. 1966. Handbook of Palynology. Munksguard, Copenhagen.
Faivre AE. 2000. Ontogenetic differences in heterostylous plants and implications for development from a herkogamous ancestor. Evolution 54: 847–858. DOI: https://doi.org/10.1111/j.0014-3820.2000.tb00085.x
Feinsinger P, Busby WH. 1987. Pollen carryover: experimental comparisons between morphs of Palicourea lasiorrachis (Rubiaceae), a distylous, bird-pollinated, tropical treelet. Oecologia 73: 231–235. DOI: https://doi.org/10.1007/BF00377512
Ferrero V. 2014. Heterostilia, ¿qué sabemos hasta el momento? Ecosistemas 23: 23–30. DOI: https://doi.org/10.7818/ECOS.2014.23-3.04
Ferrero V, Rojas D, Vale A, Navarro L. 2012. Delving into the loss of heterostyly in Rubiaceae: Is there a similar trend in tropical and non-tropical climate zones? Perspectives in Plant Ecology, Evolution and Systematics 14: 161–167. DOI: https://doi.org/10.1016/j.ppees.2011.11.005
Flores-Rentería L, Orozco-Arroyo G, Cruz-García F, García-Campusano F, Alfaro I, Vázquez-Santana S. 2013. Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae). Annals of Botany 112: 789–800. DOI: https://doi.org/10.1093/aob/mct141
Ganders FR. 1979. The biology of heterostyly. New Zealand Journal of Botany 17: 607–635.
García-Robledo C. 2008. Asymmetry in pollen flow promotes gender specialization in morphs of the distylous neotropical herb Arcytophyllum lavarum (Rubiaceae). Evolutionary Ecology 22: 743–755. DOI: https://doi.org/10.1007/s10682-007-9198-0
Gavrieli Y, Sherman Y, Ben-Sasson SA. 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. Journal of Cell Biology 119: 493–501. DOI: https://doi.org/10.1083/jcb.119.3.493
González C, Ornelas JF, Jiménez L. 2005. Between-year changes in functional gender expression of Palicourea padifolia (Rubiaceae), a distylous, hummingbird-pollinated shrub. Annals of Botany 95: 371–378. DOI: https://doi.org/10.1093/aob/mci026
Gutiérrez-Rodríguez C, Ornelas JF, Rodríguez-Gómez F. 2011. Phylogeography of a distylous shrub (Palicourea padifolia, Rubiaceae) reveals past fragmentation and demographic expansion in Mexican cloud forests. Molecular Phylogenetics and Evolution 61: 603–615. DOI: https://doi.org/10.1016/j.ympev.2011.08.023
Hansson T, El-Ghazaly G. 2000. Development and cytochemistry of pollen and tapetum in Mitriostigma axillare (Rubiaceae). Grana 39: 65–89. DOI: https://doi.org/10.1080/001731300300045184
Hernández A, Ornelas JF. 2003. Correlación morfo-específica en flores de Palicourea padifolia (Rubiaceae). Boletín de la Sociedad Botánica de México 73: 35–41. DOI: https://doi.org/10.17129/botsci.1677
Hernández A, Ornelas JF. 2007 a. Disassortative pollen transfer in distylous Palicourea padifolia (Rubiaceae), a hummingbird-pollinated shrub. EcoScience 14: 8–16. DOI: https://doi.org/10.2980/1195-6860(2007)14[8:DPTIDP]2.0.CO;2
Hernández A, Ornelas JF. 2007 b. Development of distylous flowers and investment of biomass in male and female function in Palicourea padifolia (Rubiaceae). Plant Biology 9: 694–704. DOI: https://doi.org/10.1055/s-2007-965238
Jiang XF, Zhu XF, Li QJ. 2018. Variation in the degree of reciprocal herkogamy affects the degree of legitimate pollination in a distylous species. AoB Plants 10: ply022. DOI: https://doi.org/10.1093/aobpla/ply022
Kaul MLH. 1988. Male sterility in higher plants. Springer, Berlin, Germany.
Lau P, Bosque C. 2003. Pollen flow in the distylous Palicourea fendleri (Rubiaceae): an experimental test of the disassortative pollen flow hypothesis. Oecologia 135: 593–600. DOI: https://doi.org/10.1007/s00442-003-1216-5
Li A-M, Wu X -Q, Zhang D-X, Barrett SCH. 2010. Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. Annals of Botany 106: 521–531. DOI: https://doi.org/10.1093/aob/mcq146
Liu S-J, Wu L-Y, Huang S-Q. 2016. Shortened anther-stigma distance reduces compatible pollination in two distylous Primula species. Journal of Plant Ecology 9: 224–232. DOI: https://doi.org/10.1093/jpe/rtv049
Lloyd DG. 1979. Evolution towards dioecy in heterostylous populations. Plant Systematics and Evolution 131: 71–80. DOI: https://doi.org/10.1007/BF00984123
Lloyd DG, Webb CJ. 1992 a. The evolution of heterostyly. In: Barrett SCH, ed. Evolution and function of heterostyly. Berlin, Germany: Springer-Verlag, pp. 151–178.
Lloyd DG, Webb CJ. 1992 b. The selection of heterostyly. In: Barrett SCH, ed. Evolution and function of heterostyly. Berlin, Germany: Springer-Verlag, pp. 179–207.
Luo ZL, Gu L, Zhang DX. 2009. Intrafloral differentiation of stamens in heterantherous flowers. Journal of Systematics and Evolution 47: 43–56. DOI: https://doi.org/10.1111/j.1759-6831.2009.00002.x
Martén-Rodríguez S, Muñoz-Gamboa P, Delgado-Dávila R, Quesada M. 2013. Asymmetric pollen transfer and reproductive success of the hawkmoth-pollinated distylous tree Palicourea tetragona (Rubiaceae) at La Selva, Costa Rica. Journal of Tropical Ecology 29: 501–510. DOI: https://doi.org/10.1017/S0266467413000588
Márquez-Guzmán J, Wong JGR, Pérez-Pacheco MK, López-Curto L, Murguía-Sánchez G. 2016. Técnicas de laboratorio para el estudio del desarrollo en Angiospermas. Las prensas de ciencias. Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF.
Muenchow GE, Grebus M. 1989. The evolution of dioecy from distyly: reevaluation of the hypothesis of long-tongued pollinators. The American Naturalist 133: 149–156. DOI: https://doi.org/10.1086/284906
Nepokroeff M, Bremer B, Sytsma K. 1999. Reorganization of the genus Psychotria and tribe Psychotrieae (Rubiaceae) inferred from ITS and rbcL sequence data. Systematic Botany 24: 5–27. DOI: https://doi.org/10.2307/2419383
Ornduff R. 1966. The origin of dioecism from heterostyly in Nymphoides (Meryanthaceae). Evolution 20: 309–314. DOI: https://doi.org/10.1111/j.1558-5646.1966.tb03368.x
Ornelas JF, Jiménez L, González C, Hernández A. 2004 a. Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane forest. I. Hummingbirds’ effectiveness as pollen vectors. American Journal of Botany 91: 1052–1060. DOI: https://doi.org/10.3732/ajb.91.7.1052
Ornelas JF, González C, Jiménez L, Lara C, Martínez AJ. 2004 b. Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane forest. II. Attracting and rewarding mutualistic and antagonistic visitors. American Journal of Botany 91: 1061–1069. DOI: https://doi.org/10.3732/ajb.91.7.1061
Pacini E. 1997. Tapetum character states: analytical keys for tapetum types and activities. Canadian Journal of Botany 75: 1448¬–1459. DOI: https://doi.org/10.1139/b97-859
Pailler T, Thomson JD. 1997. Distyly and variation in heteromorphic incompatibility in Gaertnera vaginata (Rubiaceae) endemic in La Réunion Island. American Journal of Botany 84: 315–327. DOI: https://doi.org/10.2307/2446005
Pailler T, Humeau L, Figier J, Thomson JD. 1998 a. Altitudinal variation in the reproductive biology of the functionally dioecious and morphologically heterostylous island endemic Chassalia coralliodes (Rubiaceae). Biological Journal of the Linnean Society 64: 297–313. DOI: https://doi.org/10.1111/j.1095-8312.1998.tb00335.x
Pailler T, Humeau L, Thompson JD. 1998 b. Distyly and heteromorphic incompatibility in oceanic island species of the genus Erythroxylum. Plant Systematics and Evolution 213: 187–198.
Raghavan V. 1997. Molecular embryology of flowering plants. Cambridge, UK: Cambridge University Press.
Ree RH. 1997. Pollen flow, fecundity, and the adaptive significance of heterostyly in Palicourea padifolia (Rubiaceae). Biotropica 29: 298–308. DOI: https://doi.org/10.1111/j.1744-7429.1997.tb00431.x
Richards JH, Barrett SCH. 1984. The developmental basis of tristyly in Eichhornia paniculata (Pontederiaceae). American Journal of Botany 71: 1347–1363. DOI: https://doi.org/10.1002/j.1537-2197.1984.tb11992.x
Richards JH, Barrett SCH. 1992. The development of heterostyly. In: Barrett SCH, ed. Evolution and function of heterostyly. Berlin, Germany: Springer-Verlag, pp. 85–127.
Rosas F, Domínguez CA. 2009. Male sterility, fitness gain curves and the evolution of gender specialization from distyly in Erythroxylum havanense. Journal of Evolutionary Biology 22: 50–59. DOI: https://doi.org/10.1111/j.1420-9101.2008.01618.x
Sá T, Furtado MT, Ferrero V, Pérez-Barrales R, Rodrigues EB, Dos Santos IG, Consolaro H. 2016. Floral biology, reciprocal herkogamy and breeding system in four Psychotria species (Rubiaceae) in Brasil. Botanical Journal of the Linnean Society 182: 689–707. DOI: https://doi.org/10.1111/boj.12476
Sakai S, Wright SJ. 2008. Reproductive ecology of coexisting Psychotria species (Rubiaceae): when is heterostyly lost? Biological Journal of the Linnean Society 93: 125–134. DOI: https://doi.org/10.1111/j.1095-8312.2007.00890.x
Scribailo RW, Barrett SCH. 1991 a. Pollen-pistil interactions in tristylous Pontederia sagittata (Pontederiaceae). I. Floral heteromorphism and structural features of the pollen tube pathway. American Journal of Botany 78: 1643–1661. DOI: https://doi.org/10.1002/j.1537-2197.1991.tb14530.x
Scribailo RW, Barrett SCH. 1991 b. Pollen-pistil interactions in tristylous Pontederia sagittata (Pontederiaceae). II. Patterns of pollen tube growth. American Journal of Botany 78: 1662–1682. DOI: https://doi.org/10.1002/j.1537-2197.1991.tb14531.x
Shultz ST. 1994. Nucleo-cytoplasmic male sterility and alternatives routes to dioecy. Evolution 48: 1933–1945. DOI: https://doi.org/10.1111/j.1558-5646.1994.tb02224.x
Sobrevila C, Ramírez N, de Enrech NX. 1983. Reproductive biology of Palicourea landleri and P. petiolaris (Rubiaceae), heterostylous shrubs of a tropical cloud forest in Venezuela. Biotropica 15: 161–169.
Stone JL. 1995. Pollen donation patterns in a tropical distylous shrub (Psychotria suerrensis, Rubiaceae). American Journal of Botany 82: 1390–1398. DOI: https://doi.org/10.1002/j.1537-2197.1995.tb12675.x
Stone JL. 1996. Components of pollination effectiveness n Psychotria suerrensis, a tropical distylous shrub. Oecologia 107: 504–512. DOI: https://doi.org/10.1007/BF00333942
Stone JL, Thomson JD. 1994. The evolution of distyly: pollen transfer in artificial flowers. Evolution 48: 1595–1606. DOI: https://doi.org/10.1111/j.1558-5646.1994.tb02198.x
Taylor CM. 1989. Revision of Palicourea (Rubiaceae) in Mexico and Central America. Systematic Botanical Monographs 26: 1–102.
Taylor CM. 1993. Revision of Palicourea (Rubiaceae: Psychotrieae) in the West Indies. Moscosoa 7: 201–241.
Taylor CM. 1996. Overview of the Psychotrieae (Rubiaceae) in the Neotropics. Opera Botanica Belgica 7: 261–270.
Taylor CM. 1997. Conspectus of the genus Palicourea (Rubiaceae: Psychotrieae) with the description of some new species from Ecuador and Colombia. Annals of the Missouri Botanical Garden 84: 224–262.
Valois-Cuesta H, Soriano PJ, Ornelas JF. 2011 a. Dimorphisms and self-incompatibility in the distylous species Palicourea demissa (Rubiaceae): possible implications for its reproductive output. Journal of Plant Research 124: 137–146. DOI: https://doi.org/10.1007/s10265-010-0359-9
Valois-Cuesta H, Soriano PJ, Ornelas JF. 2011 b. Asymmetrical legitimate pollination in distylous Palicourea demissa (Rubiaceae): the role of nectar production and pollinator visitation. Journal of Tropical Ecology 27: 393–404. DOI: https://doi.org/10.1017/S0266467411000150
Valois-Cuesta H, Soriano PJ, Ornelas JF. 2012. Gender specialization in Palicourea demissa (Rubiaceae), a distylous, hummingbird-pollinated treelet. Plant Systematics and Evolution 298: 975–984. DOI: https://doi.org/10.1007/s00606-012-0607-7
Vázquez-Santana S, Domínguez CA, Márquez-Guzmán J. 1996. Embriología de Erythroxylum havanense Jacq. (Erythroxylaceae). Boletín de la Sociedad Botánica de México 59: 25–33.
Vuilleumier B. 1967. The origin and evolutionary development of heterostyly in the angiosperms. Evolution 21: 210–226. DOI: https://doi.org/10.1111/j.1558-5646.1967.tb00150.x
Weller SG. 2009. The different forms of flowers—What have we learned since Darwin? Botanical Journal of the Linnean Society 160: 249–261. DOI: https://doi.org/10.1111/j.1095-8339.2009.00984.x
Wu H, Cheung AY. 2000. Programmed cell death in plant reproduction. Plant Molecular Biology 44: 267–281. DOI: https://doi.org/10.1023/A:1026536324081
Wyatt R. 1983. Pollinator-plant interactions and the evolution of plant breeding systems. In: Real L, ed. Pollination Biology. New York, USA: Academic Press, pp. 51–95.
Yuan S, Chen S, Deng X, Duan T, Luo Z, Zhang D. 2017. Pollen–ovule rations are strongly correlated with floral reciprocity, in addition to sexual system, in Mussaenda (Rubiaceae). Nordic Journal of Botany 35: 395–403. DOI: https://doi.org/10.1111/njb.01479
Yue L, Twell D, Kuang Y, Liao J, Zhou X. 2017. Transciptome analysis of Hamelia patens (Rubiaceae) anthers reveals candidate genes for tapetum and pollen wall development. Frontiers in Plant Science 7: 1991. DOI: https://doi.org/10.3389/fpls.2016.01991
Zhou W, Barrett, SCH, Wang H, Li DZ. 2015. Reciprocal herkogamy promotes disassortative mating in a distylous species with intramorph compatibility. New Phytologist 206: 1503–1512. DOI: https://doi.org/10.1111/nph.13326
Published
2020-10-06
How to Cite
OrnelasJ. F., Márquez-GuzmánJ., & Pérez PachecoM. (2020). Pollen and anther development malfunction in distylous flowers of Palicourea padifolia (Rubiaceae). Botanical Sciences, 98(4), 554-569. https://doi.org/10.17129/botsci.2608
Section
STRUCTURAL BOTANY / BOTÁNICA ESTRUCTURAL