Production and chemical composition of Dalea bicolor essential oil in different regions of Chihuahua State, Mexico

  • Saúl Vásquez-Montes Centro de Investigación para los Recursos Naturales (CIRENA) http://orcid.org/0000-0002-0028-6569
  • Federico Villarreal-Guerrero
  • Nubia Ivette Amaya-Olivas
  • León R. Hernández-Ochoa
keywords: bioacctive compounds, limonene, ocimene, ß-phellandrene, 3-carene

Abstract

Background: Dalea bicolor grows in the Chihuahuan Desert. It is an important fodder source for cattle and fauna, and its recommended for bioremediation and ecological restoration. This is the first study about its essential oil.

Questions and / or hypotheses: How much essential oil produces D. bicolor at the end of flowering stage? Is the oil production equal under different environmental conditions? What climate and soil variables influence oil production? What compounds are found in the essential oil?

Species under study: Dalea bicolor.

Study site and dates: Four regions in the state of Chihuahua, within the latitudes of 26° 34’ 12” N and 28° 47’ 24” N. The sampling was carried out during November of 2017.

Methods: Extraction of the essential oil by hydrodistillation. Analysis of variance of essential oil production among the regions. Correlation analysis between oil production and climate, as well as soil variables. Gas-mass chromatography coupled with mass spectrometry for the determination of the most likely essential oil compounds.

Results: Essential oil production was different among the regions. In Aldama region it was significantly higher with 5.18 ± 0.64 g Kg-1 of dry matter. Essential oil production was correlated positively with air temperature and the concentration of boron and zinc in the soil. Seventeen compounds were detected in the essential oil.

Conclusions: High air temperatures and soils rich in boron and zinc favor the production of D. bicolor essential oil. The main compound of the essential oil was 3-carene, followed by limonene, ocimene and ?-phellandrene.

Downloads

Download data is not yet available.

Author Biography

Saúl Vásquez-Montes, Centro de Investigación para los Recursos Naturales (CIRENA)

Ing. Agronómo especialidad en Zonas Áridas (URUZA-Universidad Autónoma Chapingo) Maestro en Ciencias - Agrometeorología (Colegio de Posgraduados, Montecillo, Texcoco, Edo. de Méx.)) Investigador en Conservación y Aprovechamiento de Recursos Naturales (Centro de Investigación para los Recursos Naturales-CIRENA, Salaices, Chih.) Estudiante de Doctorado - Área: Recursos Naturales (Facultad de Zootecnia y Ecología-UACH-Chihuahua, Chih.)

Production and chemical composition of Dalea bicolor essential oil in different regions of Chihuahua State, Mexico

References

Adal AM, Sarker LS, Lemke AD, Mahmoud SS. 2017. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from. Lavandula x intermedia. Plant Molecular Biology 93: 641-657. DOI: https://doi.org/10.1007/s11103-017-0588-6

Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406: 512–515. DOI: https://doi.org/10.1038/35020072

Baldwin IT. 2010. Plant volatiles. Current Biology 20: R392-R397. DOI: https:// doi.org/10.1016/j.cub.2010.02.052

Barneby RC. 1977. Daleae Imagines, An illustrated revision of Errazurizia Philippi, Psorothamnus Rydberg, Marina Liebmann, and Dalea Lucanus emend. Barneby, including all species of Leguminosae tribe Amorpheae Borissova ever referred to Dalea. Memoirs of The New York Botanical Garden Volume 27. The New York Botanical Garden Bronx, New York, U.S.A. ISBN: 0-89327-001-6

Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, Beauchemin KA. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology 145: 209-228. DOI: https://doi.org/10.1016/j.anifeedsci.2007.04.014

Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y, Dixon RA, Broun P. 2009. Divergent Regulation of Terpenoid Metabolism in the Trichomes of Wild and Cultivated Tomato Species. Plant Physiology 149: 499–514. DOI: www.plantphysiol.org/cgi/doi/10.1104/pp.108.126276

Birkett MA, Campbell CA M, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Woodcock CM. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences 97: 9329–9334. DOI: https://doi.org/10.1073/pnas.160241697

Carrillo-González R, González-Chávez MCA. 2006. Metal accumulation in wild plants surrounding mining wastes. Environmental Pollution 144:84–92. DOI: https://doi.org/10.1016/j.envpol.2006.01.006

Cobellis G, Trabalza-Marinucci M, Yu Z. 2016. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment 545–546: 556-568. DOI: http://dx.doi.org/10.1016/j.scitotenv.2015.12.103

Coutinho I, Cardoso C, Ré N, Melo A, Vieira M, Honda N, Coelho R. 2009. Gas Chromatography-Mass Spectrometry (GC-MS) and evaluation of antioxidant and antimicrobial activities of essential oil of Campomanesia adamantium (Cambess.) O. Berg (Guavira). Brazilian Journal of Pharmaceutical Sciences 45: 767-776. DOI: https://doi.org/10.1590/S1984-82502009000400022

Dixit D, Srivastava NK, Sharma S. 2002. Boron deficiency induced changes in translocation of 14CO2–photosynthate into primary metabolites in relation to essential oil and curcumin accumulation in turmeric (Curcuma longa L.). Photosynthetica 40: 109-113. DOI: https://doi.org/10.1023/A:1020118913452

Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198: 16–32. DOI: https://doi.org/10.1111/nph.12145

Dregne HE, Chou NT. 1992. Global desertification dimensions and costs. In Degradation and restoration of arid lands. Texas Tech. University. Lubbock, TX. DOI: http://www.ciesin.columbia.edu/docs/002-186/002-186.html

Erasto P, Viljoen AM. 2008. Limonene - A Review: Biosynthetic, Ecological and Pharmacological Relevance. Natural Product Communications 3: 1193–1202. DOI: https://www.researchgate.net/publication/279578695

Estell RE, Fredrickson EL, Anderson DM, Havstad KM, Remmenga MD. 1998. Relationship of tarbush leaf surface terpene profile with livestock herbivory. Journal of Chemical Ecology 24: 1-12. DOI: https://doi.org/10.1023/A:1022399426352

Estell RE. 2010. Coping with shrub secondary metabolites by ruminants. Small Ruminant Research 94: 1–9. DOI: https://doi.org/10.1016/j.smallrumres.2010. 09.012

Estell RE, Havstad KM, Cibils AF, Fredrickson EL, Anderson DM, Schrader TS, James DK. 2012. Increasing Shrub Use by Livestock in a World with Less Grass. Rangeland Ecology & Management 65: 553–562. DOI: https://doi.org/10.2111/REM-D-11-00124.1

Farré-Armengol G, Filella I, Llusià J, Peñuelas J. 2017. ?-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms. Molecules 22: 1148. DOI: http://dx.doi.org/10.3390/molecules22071148

Fäldt J, Arimura G, Gershenzon J, Takabayashi J, Bohlmann J. 2003. Functional identification of AtTPS03 as (E)-beta-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 216: 745-751. DOI: https://doi.org/10.1007/s00425-002-0924-0

Gelviz-Gelvez SM, Pavón NP, Illoldi-Rangel P, Ballesteros-Barrera C. 2015. Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecological Engineering 74:302-309. DOI: http://dx.doi.org/10.1016/j.ecoleng.2014.09.082

Ghirardo A, Koch K, Taipale R, Zimmer I, Schnitzler JP, Rinne J. 2010. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant, Cell and Environment 33: 781–792. DOI: http://dx.doi.org/10.1111/j.1365-3040.2009.02104.x

González-Chávez MC, Carrillo-González R, Gutiérrez-Castorena MC. 2009. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials: 161: 1288–1298. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.110

González-Chávez MCA, Sánchez-López AS, Carrillo-González R. 2015. Arsenic Concentration in Wild Plants Growing on Two Mine Tailings. Pharmacognosy Communications 5:197-206. DOI: https://doi.org/10.5530/pc.2015.3.5

Guefrachi I, Rejili M, Mahdhi M, Mars M. 2013. Assessing Genotypic Diversity and Symbiotic Efficiency of Five Rhizobial Legume Interactions Under Cadium Stress for Soil Phytoremediation. International Journal of Phytoremediation 15: 938-951. DOI: https://doi.org/10.1080/15226514.2012.751350

Gutiérrez-Luna R, Rodríguez-Tenorio D, Martínez-Trejo G, Aguirre-Calderón C, Sánchez-Gutiérrez RA. 2012. Bancos de proteína para rumiantes en el Semiárido Mexicano. Folleto Técnico Número 47. Campo Experimental Zacatecas. CIRNOC– INIFAP. México, D. F. ISBN: 978-607-425-970-4

Hernández-Ochoa L, Aguirre-Prieto YB, Nevarez-Moorillon GV, Gutierrez-Mendez N, Salas-Muñoz E. 2014. Use of essential oils and extracts from spices in meat protection. Journal of Food Science and Technology 51: 957-963. DOI: https://doi.org/10.1007/s13197-011-0598-3

Intergovermental Panel on Climate Change (IPCC). 2007. Fourth Assessment Report of Working Group I. Climate Change 2007. The Physical Science Basis, Summary for Policymaker. Cambridge University Press, Cambridge U.K.

Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. 2006. Diversity and Distribution of Floral Scent. The Botanical Review 72: 1–120. DOI: https://www.researchgate.net/publication/42089062

Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR.2006. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nature Protocols 1: 387–396. DOI: https://doi.org/10.1038/nprot.2006.59

Liu ZL, Yang K, Bai PH, Zhou L, Liu SL, Liu QZ. 2014. Gas Chromatography-Mass Spectrometric Analysis of Essential Oil of Aerial Parts of Glycosmis parviflora (Sims) Little (Rutaceae). Tropical Journal of Pharmaceutical Research 13: 275-280. DOI: http://dx.doi.org/10.4314/tjpr.v13i2.17

Medina AL, Lucero ME, Holguin FO, Estell RE, Posakony J, Simon J, O'Connell MA. 2005. Composition and Antimicrobial Activity of Anemopsis californica Leaf Oil. Journal of Agricultural and Food Chemistry 53: 8694-8698. DOI: http://dx.doi.org/10.1021/jf0511244

Mellado M. 2016. Dietary selection by goats and the implications for range management in the Chihuahuan Desert: A review. The Rangeland Journal 38: 331-341. DOI: https://doi.org/10.1071/RJ16002

Mellado M, Valdez R, Lara LM, López R. 2003. Stocking Rate Effects on Goats: A Research Observation. Journal of Range Management 56:167-173. DOI: https://doi.org/10.2307/4003901

Noguez-Inesta A, López-Sánchez AS, Carrillo-González R, González-Chávez MCA. 2017. Uso de leguminosas (fabaceae) en fitorremediación. Agroproductividad 10: 57-62.

Ormeño E, Fernandez C, Mévy J. 2007. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68: 840–852. DOI: https://doi.org/10.1016/j.phytochem.2006.11.033

Pavarini DP, Pavarini SP, Niehues M, Lopes NP. 2012. Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology 176: 5–16. DOI: http://dx.doi.org/10.1016/j.anifeedsci.2012.07.002

Pickett JA, Rasmussen HB, Woodcock CM, Matthes M, Napier JA. 2003. Plant stress signalling: understanding and exploiting plant–plant interactions. Biochemical Society Transactions 31: 123–127. DOI: https://doi.org/10.1042/bst0310123

Rodríguez-Alvárez M, Alcaráz-Meléndez L, Real-Cosío S. 2012. Procedimientos para la extracción de aceites esenciales en plantas aromáticas. Centro de Investigaciones Biológicas del Noroeste S.C. La Paz, Baja California Sur, México. https://cibnor.repositorioinstitucional.mx/jspui/bitstream/1001/540/1/rodriguez_m.pdf

Saadati S, Moallemi N, Mortazavi SMH, Seyyednejad SM. 2013. Effects of zinc and boron foliar application on soluble carbohydrate and oil contents of three olive cultivars during fruit ripening. Scientia Horticulturae 164: 30–34. DOI: http://dx.doi.org/10.1016/j.scienta.2013.08.033

Sánchez-López AS, Carrillo-González R, González-Chávez MC, Rosas-Saito GH, Vangronsveld J. 2015a. Phytobarriers: Plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environmental Pollution 205: 33-42. DOI: http://dx.doi.org/10.1016/j.envpol.2015.05.010

Sánchez-López AS, González-Chávez MCA, Carrillo-González R, Vangronsveld J, Díaz-Garduño M. 2015b. Wild Flora of Mine Tailings: Perspectives for Use in Phytoremediation of Potentially Toxic Elements in a Semi-Arid Region in Mexico. International Journal of Phytoremediation 17: 476-484. DOI: https://doi.org/10.1080/15226514.2014.922922

Schiestl FP, Glaser F. 2012. Specific ant-pollination in an alpine orchid and the role of floral scent in attracting pollinating ants. Alpine Botany 122: 1–9. DOI: http://dx.doi.org/10.1007/s00035-011-0098-0

Silva-Vázquez R, Dunford TN. 2005. Bioactive Components of Mexican Oregano Oil as Affected by Moisture and Plant Maturity. Journal of Essential Oil Research 17: 668-671. DOI: https://doi.org/10.1080/10412905.2005.9699028

Siqueiros-Delgado ME, Rodríguez-Avalos JA, Martínez-Ramírez J, Sierra-Muñoz JC. 2016. Situación actual de la vegetación del estado de Aguascalientes, México. Botanical Sciences 94: 455-470. DOI: http://dx.doi.org/10.17129/botsci.466

Servicio Meteorológico Nacional (SMN). 2018. Comisión Nacional del Agua. Gobierno de México. (Acceso: 15 de Noviembre, 2018).

Sugier D, Sugier P, Kowalski R, Ko?odziej B, Olesi?ska K. 2017. Foliar boron fertilization as factor affecting the essential oil content and yield of oil components from flower heads of Arnica montana L. and Arnica chamissonis Less. cultivated for industry. Industrial Crops & Products 109: 587–597. DOI: http://dx.doi.org/10.1016/j.indcrop.2017.09.014

Tsolakis N, Bam W, Srai JS, Kumar M. 2019. Renewable chemical feedstock supply network design: The case of terpenes. Journal of Cleaner Production 222: 802-822. DOI: https://doi.org/10.1016/j.jclepro.2019.02.108

Vásquez-Montes S, Domínguez-Caraveo H, Figueroa-Ramírez J. 2012. Nutritional quality of native forage shrubs of south central Chihuahua, Mexico. 17th. Wildland Shrub Symposium: Humans in changing landscapes. Program and Abstracts. Las Cruces, New Mexico, U.S.A.

Verma NY, Shukla S. 2015. Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites. Journal of Applied Research on Medical and Aromatic Plants 2: 105-113. DOI: http://dx.doi.org/10.1016/j.jarmap.2015.09.002

Voxeur A, Fry SC. 2014. Glycosylinositol phosphorylceramides (GIPCs) from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. Plant Journal 79: 139–149. DOI: https://doi.org/10.1111/tpj.12547

Warren LE, Ueckert DN, Shelton M, Chamrad AD. 1984. Spanish Goat Diets on Mixed-brush rangeland in the South Texas Plains. Journal of Range Management 37: 340-342.

Weso?owska A, Jadczak P, Kulpa D, Przewodowski W. 2019. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Essential Oils from AgNPs and AuNPs Elicited Lavandula angustifolia In Vitro Cultures. Molecules 24: 606. DOI: https://doi.org/10.3390/molecules24030606

Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C,Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. 2018. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Research 4: 608-617. DOI: 10.1093/nar/gkx1089. (Acceso: 10 de Abril 2019).

Zahid M, Arif M, Rahman MA, Singh K, Mujahid M. 2017. Solvent Extraction and Gas Chromatography–Mass Spectrometry Analysis of Annona squamosa L. Seeds for Determination of Bioactives, Fatty Acid/Fatty Oil Composition, and Antioxidant Activity. Journal of Dietary Supplements 15: 613–623. DOI: http://dx.doi.org/10.1080/19390211.2017.1366388

Zhao J, Davis LC, Verpoorte R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23: 283–333. DOI: https://doi.org/10.1016/j.biotechadv.2005.01.003
Published
2020-10-06
How to Cite
Vásquez-MontesS., Villarreal-GuerreroF., Amaya-Olivas N. I., & Hernández-Ochoa L. R. (2020). Production and chemical composition of Dalea bicolor essential oil in different regions of Chihuahua State, Mexico. Botanical Sciences, 98(4), 486-498. https://doi.org/10.17129/botsci.2602
Section
ECOLOGY / ECOLOGÍA