Diversity and functional traits of terrestrial orchids in forest of a protected natural area of northeastern Mexico

  • Samantha Baltazar Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional. Santa Cruz Xoxocotlán, Oaxaca https://orcid.org/0000-0003-4994-0186
  • Rodolfo Solano Instituto Politécnico Nacional
keywords: diversity indices, floristic, El Cielo Biosphere Reserve, functional diversity, Orchidaceae


Background: The functional traits of plants are related to their adaptive strategies and are important in the diversity of their ecosystems, but they have been little studied. For his adaptations in seasonal environments, terrestrial orchids are a model to study the relationship between taxonomic and functional diversity with the environment.

Questions: How does the orchids diversity and their functional traits change between vegetation types? Do the functional traits allow to recognize orchid groups? Are the diversity and functional traits of orchids associated with environmental variables?

Study site and dates: El Cielo Biosphere Reserve, January 2016 to January 2017.

Methods: The richness, abundance and functional traits of terrestrial orchids were recorded, as well as environmental variables in three vegetation types, estimating the true and functional diversity and the species turnover. Variation in functional traits was analyzed to identify functional groups; the relationships between diversity, functional traits and environmental variables were evaluated.

Results:The cloud and pine-oak forests presented higher true diversity, species turnover and functional diversity than the sub-deciduous tropical forest. Three functional groups determined by traits associated with accumulation and conservation of reserves were recognized. Taxonomic and functional diversity was related to temperature, humidity, and canopy density. There was no relationship between richness and abundance with functional diversity.

Conclusions: Taxonomic diversity does not determine the functional diversity; environments subjected to greater environmental stress presented greater functional diversity; the composition of functional groups evidences convergence events in functional traits.


Download data is not yet available.

Author Biography

Rodolfo Solano, Instituto Politécnico Nacional

Profesor, CIIDIR Unidad Oaxaca

Diversity and functional traits of terrestrial orchids in forest of a protected natural area of northeastern Mexico


Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, Franco M. 2014. Functional traits explain variation in plant life history strategies. PNAS 111: 740-745. DOI: https://doi.org/10.1073/pnas.1315179111
Antlfinger A, Wendel L. 1997. Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). American Journal of Botany 84: 769-780. DOI: https://doi.org/10.2307/2445813
Arellano-Rivas A, De-Nova JA, Munguía-Rosas MA. 2016. Patch isolation and shape predict plant functional diversity in a naturally fragmented forest. Journal of Plant Ecology 11: 136-146. DOI: https://doi.org/10.1093/jpe/rtw119
Argue C. 2012. Introduction. En: Argue CL, ed. The pollination biology of North American Orchids: Volume 1: North of Florida and Mexico. New York: Springer, New York, pp. 1-16. DOI: https://doi.org/10.1007/978-1-4614-0592-4_1
Botta-Dukát Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540. DOI: https://doi.org/10.1111/j.1654-1103.2005.tb02393.x
Bailarote BC, Lievens B, Jacquemyn H. 2012. Does Mycorrhizal specificity affect orchid decline and rarity? American Journal of Botany 99: 1655-1665. DOI: https://doi.org/10.3732/ajb.1200117
Cadotte MW, Tucker CM. 2017. Should environmental filtering be abandoned? Trends in Ecology & Evolution 32: 429-437 https://doi.org/10.1016/j.tree.2017.03.004
Chacón-Labella J, de la Cruz M, Pescador DS, Escudero A. 2016. Individual species affect plant traits structure in their surroundings: evidence of functional mechanisms of assembly. Oecologia 180: 975-87. DOI: https://doi.org/10.1007/s00442-016-3547-z
Chase MW, Cameron KM, Freudenstein JV. Pridgeon AM, Salazar G, van den Berg C, Schuiteman A. 2015. An updated classification of Orchidaceae. Botanical Journal of the Linnean Society 177: 151-174. DOI: https://doi.org/10.1111/boj.12234
Colwell RK. 2013. EstimateS, statistical estimation of species richness and shared species from samples. University of Connecticut, USA. http://viceroy.colorado.edu/estimates/ (acceso Febrero 13, 2017).
CONAGUA. 2016. Comisión Nacional del Agua: Sistema Meteorológico Nacional. México, DF: Gobierno de México. (acceso Marzo 05, 2017).
Cornwell WK, Ackerly DD. 2009. Community assembly Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109-126. DOI: https://doi.org/10.1890/07-1134.1
Coux C, Rader R, Bartomeus I, Tylianakis JM. 2016. Linking species functional roles to their network roles. Ecology Letters 19: 726-770. DOI: https://doi.org/10.1111/ele.12612
Córdova J, Del Castillo RF. 2001. Changes in epiphyte cover in three chronosequences in a tropical montane cloud forest in México. En: Life Forms and Dynamics in Tropical Forests, Dissertationes Botanicae. Stuttgart: J.Cramer Press, pp. 79-94. ISBN 978-3-443-64259-4
Cruz-Fernández QT, Alquicira-Arteaga ML, Flores-Palacios A. 2010. Is orchid species richness and abundance related to the conservation status of oak forest? Plant Ecology 212: 1091-1099. DOI: https://doi.org/10.1007/s11258-010-9889-4
Dafni A, Cohen D, Noy-Meir I. 1981. Life-cycle variation in geophytes. Annals of the Missouri Botanical Garden 68: 652-660. DOI: https://doi.org/10.2307/2398893
De Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M. 2016. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180: 933-940. DOI: https://doi.org/10.1007/s00442-016-3546-0
De la Riva EG, Pérez-Ramos IM, Navarro CM, Olmo M, Marañón T, Villar R. 2014. Rasgos funcionales en el género Quercus: estrategias adquisitivas frente a conservativas en el uso de recursos. Ecosistemas 23: 82-89. DOI: https://doi.org/10.7818/ECOS.2014.23-2.11
Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJ, Clements MA, Arroyo MT, Leebens-Mack J, Endara L, Kriebel R, Neubig KM, Whitten WM, Williams NH, Cameron KM. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of The Royal Society B: Biological Sciences 282: 20151553, DOI: http://dx.doi.org/10.1098/rspb.2015.1553
Gould IJ, Quinton JN, Weigelt A, De Deyn GB, Bardgett RD. 2016. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters 19: 1140-1149. DOI: https://doi.org/10.1111/ele.12652
Grime JP. 1974. Vegetation classification by reference to strategies. Nature 250: 26-31. DOI: https://doi.org/10.1038/250026a0
Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86: 902-910. DOI: https://doi.org/10.1046/j.1365-2745.1998.00306.x
Gual-Díaz M, González-Medrano F. 2014. Los bosques mesófilos de montaña en México. En: Bosques mesófilos de montaña de México: diversidad, ecología y manejo. México DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad Press, pp. 27-67. ISBN: 978-607-8328-07-9
Henao-Díaz LF, Pacheco-Fernández NM, Argüello-Bernal S, Moreno-Arocha MM, Stevenson PR. 2012. Patrones de diversidad de epifitas en bosque de tierras bajas y subandinos. Colombia Forestal 15: 161-172. DOI: https://doi.org/10.14483/udistrital.jour.colomb.for.2012.2.a02
Horn S, Hempel S, Ristow M, Riling M, Kowarik I, Caruso T. 2015. Plant community assembly at small scales: Spatial vs. environmental factors in a European grassland. Acta Oecologica 63: 56-62. DOI: https://doi.org/10.1016/j.actao.2015.01.004
Juárez L, Montaña C, Franco M. 2014. The viability of two populations of the terrestrial orchid Cyclopogon luteoalbus in a fragmented tropical mountain cloud forest: Dormancy delays extinction. Biological conservation 170: 162-168. DOI: https://doi.org/10.1016/j.biocon.2013.12.021
Juárez L, Montaña C, Ferrer MM. 2011. Genetic structure at patch level of the terrestrial orchid Cyclopogon luteoalbus (Orchidaceae) in a fragmented cloud forest. Plant Systematics and Evolution 279: 237-251. DOI: https://doi.org/10.1007/s00606-011-0511-6
Keenan PE. 1992. A new form of Triphora trianthophora (Swartz) Rydberg, and part 3 of observations on the ecology of Triphora Trianthophora (Orchidaceae) in New Hampshire. Rhodora 94: 38-42.
Kembel SW, Ackerly DD, Blomberg SP, Cornwell WK, Cowan PD, Helmus MR, Morlon H, Webb CO. 2014. Picante: Integrating Phylogenies and ecology. R Package Version 1.6-2. < https://CRAN.R-project.org/package=picante> (acceso Marzo 21, 2017).
Kraft NJ, Ackerly DD. 2014. Assembly of plant communities. En: Monson RK, ed. Ecology and Environment, The Plant Sciences. New York: Springer New York, pp. 67-88. DOI: https://doi.org/10.1007/978-1-4614-7501-9
Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez I, Tauro A, Bongers F. 2013. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94: 1211-1216. DOI: https://doi.org/10.1890/12-1850.1
López-Mata L, Villaseñor JL, Cruz-Cárdenas G, Ortiz E, Ortiz-Solorio C. 2011. Predictores ambientales de la riqueza de especies de plantas del bosque húmedo de montaña de México. Botanical Sciences 90: 27-36. DOI: https://doi.org/0.17129/botsci.383
Mason NW, de Bello F. 2013. Functional diversity: a tool for answering challenging ecological questions. Journal of Vegetation Science 24: 777-780. DOI: https://doi.org/10.1111/jvs.12097
Montes-Pulido CR, Parrado-Rosselli Á, Álvarez-Dávila E. 2017. Tipos funcionales de plantas como estimadores de carbono en bosque seco del Caribe colombiano. Revista Mexicana de Biodiversidad 88: 241-249. DOI: https://doi.org/10.1016/j.rmb.2017.01.006
Morandeira NS, Kandus P. 2016. Plant functional types and trait values in the Paraná River floodplain: Modelling their association with environmental features. Flora 220: 63-73. DOI: https://doi.org/10.1016/j.flora.2016.02.007
Morandeira NS, Kandus P. 2017. Do taxonomic, phylogenetic and functional plant ?- and ?-diversity reflect environmental patterns in the Lower Paraná River floodplain? Plant Ecology & Diversity 10: 153-165. DOI: https://doi.org/10.1080/17550874.2017.1315838
Moreno CE, Barragán F, Pineda E, Pavón NP. 2011. Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad 82: 1249-1261. DOI: http://dx.doi.org/10.22201/ib.20078706e.2011.4.745
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MG, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JH. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. DOI: http://dx.doi.org/10.1071/BT12225
Pohl M, Stroude R, Buttler A, Rixen C. 2011. Functional traits and root morphology of alpine plants 108: 537-545. DOI: https://dor.org/10.1093/aob/mcr169
Poorter L. 2009. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist 181: 890-900. DOI: https://doi.org/10.1111/j.1469-8137.2008.02715.x
Ramírez-Lozano RG, Domínguez-Gómez TG, González-Rodríguez H, Cantú-Silva I, Gómez- Meza MV, Sarquís-Ramírez JI, Jurado E. 2013. Composicion y diversidad de la vegetación de cuatro sitios del noreste de México. Madera y Bosques 19: 59-72. DOI: https://doi.org/10.21829/myb.2013.192340
Rasband W. 2015. ImageJ, image processing and analysis in Java. National Institute of Health, USA. https://imagej.nih.gov/ij/ (acceso Febrero 27, 2017).
Ricotta C, Moretti M. 2011. CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181-188. DOI: https://doi.org/10.1007/s00442-011-1965-5
RStudio Team. 2018. RStudio, a Language and environment for statistical computing. RStudio Inc. https://rstudio.com/ (acceso Marzo 15, 2017).
Ruacho-González L, González -Elizondo MS, González -Elizondo M, López-González C. 2013. Diversidad florística en cimas de la Sierra Madre Occidental, México, y su relación con variables ambientales. Botanical Sciences 91: 193-205.
Salazar L, Homeier J, Kessler M, Abrahamczyk S, Lehnert M, Krömer T, Klug J. 2013. Diversity patterns of ferns along elevational gradients in Andean tropical forest. Plant Ecology & Diversity 81: 13-24. DOI: http://dx.doi.org/10.1080/17550874.2013.843036
Saldaña-Acosta A, Meave JA, Paz H, Sánchez-Velásquez LR, Villaseñor JL, Martínez-Ramos M. 2008. Variation of functional traits in trees from a biographically complex Mexican cloud forest. Oecologica 34: 111-121. DOI: https://doi.org/10.1016/j.actao.2008.04.006
Scheffé H. 1952. An analysis of variance for paired comparisons. Journal of the American Statistical Association 47: 381-400. DOI: https://doi.org/10.1080/01621459.1952.10501179
Shefferson RP, Proper J, Beissinger SR, Simms EL. Life history trade-offs in a rare orchid: the costs flowering, dormancy, and sprouting. Ecology 84: 1199-1206. DOI: https://doi.org/10.1890/0012-9658(2003)084[1199:LHTIAR]2.0.CO;2
StatSoft Inc. 2007. STATISTICA, data analysis software system. www.statsoft.com (acceso Febrero 14, 2017).
Susan-Tepetlan TM, Velázquez-Rosas N, Krömer T. 2015. Cambios en las caracteristicas funcionales de epifitas vasculares de bosque mesófilo de montaña y vegetación secundaria en la región central de Veracruz, México. Botanical Sciences 93: 153-163. DOI: https://doi.org/10.17129/botsci.228
Swarts ND, Dixon KW. 2009. Terrestrial orchids conservation in the age of extinction. Annals of Botany 104: 543-556. DOI: https://doi.org/10.1093/aob/mcp025
Swenson N. 2014. Functional and phylogenetic ecology in R. Springer New York Heidelberg Dordrecht London: Use R! ISBN: 978-1-4614-9541-3
Pla L, Casanoves J, Di Rienzo J. 2012. Quantifying Functional Biodiversity. Dordrecht, Heidelberg, London, New York: Springer Briefs in Environmental Science. ISNB: 978-94-007-2647-5
Rasmussen HN. 1995. Terrestrial orchids from seed to mycotrophic plant. New York, NY: Cambridge University Press. ISBN: 0-521-45165-5
Williams SA. 1998. Three-birds-Triphora trianthophora (Orchidaceae). Northeastern Naturalist 5: 25-27. DOI: https://doi.org/10.2307/3858318
How to Cite
BaltazarS., & SolanoR. (2020). Diversity and functional traits of terrestrial orchids in forest of a protected natural area of northeastern Mexico. Botanical Sciences, 98(4), 468-485. https://doi.org/10.17129/botsci.2600