Conyza sumatrensis allelopathy effect on Bidens pilosa (Asteraceae) seed germination

  • Paulo José Ferreira Universidade Federal do Paraná, Palotina, state of Paraná
  • Patrícia da Costa Zonetti Universidade Federal do Paraná, Palotina, state of Paraná
  • Alfredo Junior Paiola Albrecht Universidade Federal do Paraná, Palotina, state of Paraná
  • Isac George Rosset Universidade Federal do Paraná, Palotina, state of Paraná
  • André Felipe Moreira Silva Universidade Federal do Paraná, Palotina, state of Paraná http://orcid.org/0000-0002-4846-8089
  • Leandro Paiola Albrecht Universidade Federal do Paraná, Palotina, state of Paraná
  • Amanda Holz Vieira Universidade Federal do Paraná, Palotina, state of Paraná
  • Roberta Paulert Universidade Federal do Paraná, Palotina, state of Paraná
Keywords: Flavonoids, germination, interference, total phenol, weed

Abstract

Background: Other tools for weed management should be considered in addition to the use of herbicides. In this context, the identification and use of allelopathic compounds deserves attention.

Question: To quantify phenolic compounds and evaluate the allelopathic potential of extracts of Conyza sumatrensis on the germination of Bidens pilosa.

Studied species: Conyza sumatrensis (Retz.) E.Walker, Bidens pilosa L. (Asteraceae)

Study site: Palotina, state of Paraná, Brazil.

Methods: The aqueous extracts were prepared with shoot and root portions of C. sumatrensis in concentrations: 0, 1, 5 and 10 %. Germination and germination speed index were evaluated. The total flavonoids and phenols of the tested extracts were also quantified.

Results: With increasing concentrations of the extracts there was an increased inhibition of germination of B. pilosa and delays in the germination process. The extracts from the shoot of C. sumatrensis had a more expressive effect on seed germination when compared to the extracts obtained from the root. At concentration of 10 %, the extract from the shoot reduced in 83 % the percentage of germination. This may be related to the higher concentration of total flavonoids and phenols found.

Conclusion: The allelopathic potential of C. sumatrensis plants can be considered since both shoot and root extracts inhibited and/or reduced the germination of B. pilosa.

Downloads

Download data is not yet available.

Author Biographies

Paulo José Ferreira, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

Patrícia da Costa Zonetti, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

Alfredo Junior Paiola Albrecht, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

Isac George Rosset, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

André Felipe Moreira Silva, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

Leandro Paiola Albrecht, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

Amanda Holz Vieira, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

Roberta Paulert, Universidade Federal do Paraná, Palotina, state of Paraná

Universidade Federal do Paraná, Palotina, state of Paraná

Conyza sumatrensis allelopathy effect on Bidens pilosa (Asteraceae) seed germination

References

Adegas FS, Vargas L, Gazziero DLP, Karam D, Silva AF, Agostinetto D. 2017. Impacto econômico da resistência de plantas daninhas a herbicidas no Brasil. Embrapa Soja, Londrina. ISSN 2176-2864

Borghetti F, Ferreira AG. 2004. Interpretação de resultados de germinação. In: Ferreira AG, Borghetti F, eds. Germinação: do básico ao aplicado. Artmed, Porto Alegre, pp. 209-222. ISBN 85-363-0383-2

Bubna GA, Lima RB, Zanardo DYL, Santos WD, Ferrarese MDLL, Ferrarese-Filho O. 2011. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). Journal of Plant Physiology 168: 1627-1633. DOI: https://doi.org/10.1016/j.jplph.2011.03.005

Cantanhede Filho JA, Santos SL, Guilhon PSMG, Zoghbi BMG, Ports SP, Rodrigues SCI. 2017. Triterpenoids, phenolics and phytotoxic effects from Eugenia flavescens DC (Myrtaceae) leaves. Química Nova 40: 252-259. DOI: http://dx.doi.org/10.21577/0100-4042.20160190

Castro RD, Bradford KJ, Hilhorst HWM. 2004. Embebição e reativação do metabolismo. In: Ferreira AG, Borghetti F, eds. Germinação: do básico ao aplicado. Artmed, Porto Alegre, pp. 149-162. ISBN 85-363-0383-2

Djurdjević L, Mitrović M, Gajić G, Jarić S, Kostić O, Oberan L, Pavlović P. 2011. An allelopathic investigation of the domination of the introduced invasive Conyza canadensis L. Flora 206: 921-927. DOI: https://doi.org/10.1016/j.flora.2011.06.001

Ferreira DF. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35: 1039-1042. DOI: http://dx.doi.org/10.1590/S1413-70542011000600001

Ferreira AG, Aquila MEA. 2000. Alellopathy: an emerging topic in ecophysiology. Revista Brasileira de Fisiologia Vegetal 12: 175-204.

Ferreira EA, Matos CDC, Barbosa EA, Melo CAD, Silva DV, Santos JB. 2015. Physiology aspects of transgenic soybean submitted to competition with weed. Revista de Ciências Agrárias / Amazonian Journal of Agricultural and Environmental Sciences 58: 115-121. DOI: http://dx.doi.org/10.4322/rca.1745

Gazziero DLP, Adegas FS, Silva AF, Concenço G. 2019. Estimating yield losses in soybean due to sourgrass interference. Planta Daninha 37: e019190835. DOI: http://dx.doi.org/10.1590/s0100-83582019370100047

Gobbo-Neto L, Lopes NP. 2007. Medicinal plants: factors of influence on the content of secondary metabolites. Química Nova 30: 374-381. DOI: http://dx.doi.org/10.1590/S0100-40422007000200026

Heap I, Duke SO. 2018. Overview of glyphosate‐resistant weeds worldwide. Pest Management Science 74: 1040-1049. DOI: https://doi.org/10.1002/ps.4760

Kissmann KG, Groth D. 2007. Plantas infestantes e nocivas, 3rd ed. Basf, São Paulo.

Lorenzi H. 2014. Manual de identificação e controle de plantas daninhas: plantio direto e convencional. 7th ed. Plantarum, Nova Odessa. ISBN 978-85-86714-45-0

Moreira HJC, Bragança HNP. 2011. Manual de identificação de plantas infestantes. FMC Agricultural Products, Campinas.

Mullik AZ. 2008. Allelopathy: Advances, challenges and opportunities. In: Zeng RS et al. eds. Allelopathy in sustainable agriculture and forestry. Springer, New York, pp. 25-40. ISBN 978-0-387-77337-7

Neve P, Barney JN, Buckley Y, Cousens RD, Graham S, Jordan NR, ... Shaw J. 2018. Reviewing research priorities in weed ecology, evolution and management: a horizon scan. Weed Research 58: 250-258. DOI: https://doi.org/10.1111/wre.12304

Paszkowski WL, Kremer RJ. 1988. Biological activity and tentative identification of flavonoid components in velvetleaf (Abutilon theophrasti Medik.) seed coats. Journal of Chemical Ecology 14: 1573-1582. DOI: https://doi.org/10.1007/BF01012523

Pereira JC, Albuquerque-Paulino CL, Silva-Granja B, Santana AEG, Endres L, Souza RC. 2018. Allelopathic potential and identification of secondary metabolites in extracts of Canavalia ensiformis L. Revista Ceres 65: 243-252. DOI: http://dx.doi.org/10.1590/0034-737x201865030004

Pimentel-Gomes F., Garcia C.H. 2002. Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. Fealq, Piracicaba. ISBN 85-7133-014-X

Piña-Rodrigues FCM, Figliolia MB, Peixoto MC. 2004. Teste de qualidade. In: Ferreira AG, Borghetti F, eds. Germinação: do básico ao aplicado. Artmed, Porto Alegre, pp. 283-297. ISBN 85-363-0383-2

Reik GG. 2018. Fitotoxicidade e eficácia de extratos aquosos aplicados no manejo de plantas daninhas em culturas de verão. MSc. Thesis, Universidade Federal da Fronteira Sul.

Rizzardi MA, Neves R, Lamb TD, Johann LB. 2008. Potencial alelopático da cultura da canola (Brassica napus L. var. oleifera) na supressão de picão-preto (Bidens sp.) e soja. Current Agricultural Science and Technology 14: 239-248. DOI: http://dx.doi.org/10.18539/CAST.V14I2.1907

Rosario-Lebron A, Leslie AW, Yurchak VL, Chen G, Hooks CR. 2019. Can winter cover crop termination practices impact weed suppression, soil moisture, and yield in no-till soybean [Glycine max (L.) Merr.]? Crop Protection 116: 132-141. DOI: https://doi.org/10.1016/j.cropro.2018.10.020

Sansom M, Saboriso AA, Dubois M. 2013. Control of Conyza spp. with glyphosate – a review of the situation in Europe. Plant Protection Science 49: 44-53. DOI: https://doi.org/10.17221/67/2011-PPS

Shanmugam S, Thangaraj P. 2013. Total phenolic content, free radical scavenging and antimicrobial activities of Passiflora subpeltata seeds. Journal of Applied Pharmaceutical Science 3: 67-72. DOI: https://doi.org/10.7324/JAPS.2013.3412

Shaukat SS, Munir N, Siddiqui IA. 2003. Allelopathic responses of Conyza canadensis (L.) Cronquist: A cosmopolitan weed. Asian Journal of Plant Sciences 2: 1034-1039. DOI: http://dx.doi.org/10.3923/ajps.2003.1034.1039

Silva PSS. 2012. Allelochemicals in plants and the use of allelopathy in agronomy. Biotemas 25: 65-74. DOI: https://doi.org/10.5007/2175-7925.2012v25n3p65

Silva TA, Delias D, Pedó T, Abreu ES, Villela FA, Aumonde TZ. 2016. Phytotoxicity of Conyza bonariensis (L.) Cronquist extract on the seeds and lettuce seedlings physiological performance. Iheringia. Série Botânica 71: 213-221.

Sosa T, Valares C, Alías JC, Lobón NC. 2010. Persistence of flavonoids in Cistus ladanifer soils. Plant and Soil 337: 51-63. DOI: https://doi.org/10.1007/s11104-010-0504-1

Souza-Filho APS. 2014. Alelopatia: Princípios básicos e mecanismos de interferências. In: Monquero PA, org. Aspectos da biologia e manejo das plantas daninhas. Rima – SBCPD, São Carlos, pp. 83-102. ISBN 978-85-7656-298-6

Szczepański AJ. 1977. Allelopathy as a means of biological control of water weeds. Aquatic Botany 3: 193-197. DOI: https://doi.org/10.1016/0304-3770(77)90019-5

Taiz L, Zeiger E. 2010. Plant physiology. 5th ed. Sinauer Associates, Sunderland, USA.

Trainer GD, Loux MM, Harrison SK, Regnier E. 2005. Response of horseweed biotypes to foliar applications of cloransulam-methyl and glyphosate. Weed Technology 19: 231-236. DOI: https://doi.org/10.1614/WT-04-127R3

Trezzi MM, Vidal RA, Patel F, Miotto Júnior E, Debastiani F, Balbinot Júnior AA, Mosquen R. 2015. Impact of Conyza bonariensis density and establishment period on soyabean grain yield, yield components and economic threshold. Weed Research 55: 34-41. DOI: https://doi.org/10.1111/wre.12125

Tukey JW. 1949. Comparing individual means in the analysis of variance. Biometrics 5: 99-114. DOI: https://doi.org/10.2307/3001913

Wang C, Jiang K, Zhou J, Liu J. 2017. Allelopathic suppression by Conyza canadensis depends on the interaction between latitude and the degree of the plant’s invasion. Acta Botanica Brasilica 31: 212-219. DOI: http://dx.doi.org/10.1590/0102-33062017abb0045

Published
2020-06-01
How to Cite
Ferreira, P. J., Zonetti, P. da C., Albrecht, A. J. P., Rosset, I. G., Silva, A. F. M., Albrecht, L. P., Vieira, A. H., & Paulert, R. (2020). Conyza sumatrensis allelopathy effect on Bidens pilosa (Asteraceae) seed germination. Botanical Sciences, 98(2), 348-354. https://doi.org/10.17129/botsci.2445
Section
PHYSIOLOGY / FISIOLOGÍA