Functional traits of tree saplings and adults in a tropical cloud forest restoration context

Keywords: growth rate, leaf area, specific leaf area, stomatal density, wood density


Background: The use of tree species’ functional traits is a promising approach in forest restoration. However, some traits may change during ontogeny.

Questions: Does intraspecific variation in functional traits occur between sapling and adult stages? Do groups of species can be delimited based on functional traits regardless of their ontogenetic stage?

Study sites and dates: Cloud forest restoration, Veracruz, Mexico, 2016.

Methods: Saplings and adults of eight native tree species in different age plantations were measured for leaf area (LA), specific leaf area (SLA), stomatal density (SD), foliar nutrient content (C, N, P) and relative growth rate (RGR). Wood density (WD) was measured for adults. Data were analyzed using linear mixed models and principal component analysis (PCA).

Results: Overall, SLA was higher in saplings than in adults. A few species showed intraspecific variation for LA (three species), SD (three) and foliar N content (one). Species with high WD (Quercus spp.) and intermediate WD (e.g. Liquidambar styraciflua) tended to have lower LA and SLA, and higher SD. Species with low WD (e.g. Heliocarpus donnellsmithii) had high SLA, RGR, and N content. PCA highlighted that saplings and adults of a same species were close to each other within the ordination space. 

Conclusions: Intraspecific variation between saplings and adults was small for most traits (except SLA) in comparison to differences across species. Therefore species trait values (measured in individuals of any age) could be a useful tool to characterize groups of species during the forest restoration trajectory.


Download data is not yet available.

Author Biography

Guadalupe Williams-Linera, Instituto de Ecología, A.C.

Red de Ecología Funcional, Investigador Titular C

Functional traits of tree saplings and adults in a tropical cloud forest restoration context


Alvarez-Aquino C, Williams-Linera G, Newton AC. 2004. Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restoration Ecology 12: 412-418. DOI:

Bongers F, Popma J. 1990. Leaf characteristics of the tropical rain forest flora of Los Tuxtlas, Mexico. Botanical Gazette 151: 354-365. DOI:

Brancalion PHS, Holl KD. 2016. Functional composition trajectory: a resolution to the debate between Suganuma, Durigan, and Reid. Restoration Ecology 24: 1-3. DOI:

Bruijnzeel LA, Kappelle M, Mulligan M, Scatena FN. 2010. Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In: Bruijnzeel LA, Scatena FN, Hamilton LS, eds. Tropical montane cloud forests: Science for conservation and management. Cambridge: Cambridge University Press, 691-740.

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecology Letters 12: 351- 366. DOI:

Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan, HD, van der Heijden MGA. 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335–380. DOI:

Flores O, Hérault B, Delcamp M, Garnier É, Gourlet-Fleury S. 2014. Functional traits help predict post-disturbance demography of tropical trees. PloS One 9: e105022. DOI;

Gibert A, Gray E F, Westoby M, Wright IJ, Falster DS. 2016. On the link between functional traits and growth rate: meta‐analysis shows effects change with plant size, as predicted. Journal of Ecology 104: 1488-1503. DOI;

Gustafsson M, Gustafsson L, Alloysius D, Falck J, Yap S, Karlsson A, Ilstedt U. 2016. Life history traits predict the response to increased light among 33 tropical rainforest tree species. Forest Ecology and Management 362: 20-28. DOI:

Hunt R. 1990. Basic Growth Analysis. London: Unwin-Hyman Ltd.

Janse‐ten Klooster SH, Thomas EJ, Sterck FJ. 2007. Explaining interspecific differences in sapling growth and shade tolerance in temperate forests. Journal of Ecology 95: 1250-1260. DOI;

Lapok EY, Ong KH, Chubo JK, King JHP. 2017. Changes in leaf characteristics with tree age in Dryobalanops beccarii Dyer in a restored forest of Sarawak, Malaysia. Journal of Biological Science 17: 251-259. DOI: 10.3844/ojbsci.2017.251.259

Lawton RO. 1984. Ecological constraints on wood density in a tropical montane rain forest. American Journal of Botany 71: 261-267. DOI:

Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez IE, Tauro A, Bongers F. 2013. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94: 1211-1216. DOI:

Loranger J, Shipley B. 2010. Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany 88: 30-38. DOI:

Martínez-Garza C, Howe HF. 2005. Developmental strategy or immediate responses in leaf traits of tropical tree species? International Journal of Plant Sciences 166: 41-48. DOI:

Martínez-Garza C, Peña V, Ricker M, Campos A, Howe HF. 2005. Restoring tropical biodiversity: leaf traits predict growth and survival of late-successional trees in early-successional environments. Forest Ecology and Management 217: 365-379. DOI:

Martínez-Garza C, Bongers F, Poorter L. 2013. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? Forest Ecology Management 303: 35-45. DOI:

McCune B, Grace J B. 2002. Analysis of Ecological Communities. Gleneden Beach, Oregon: MjM Software Design.

Muñiz-Castro MA, Williams-Linera G, Benítez-Malvido J. 2015. Restoring montane cloud forest: establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restoration Ecology 23: 26-23. DOI:

Ostertag R, Warman L, Cordell S, Vitousek PM. 2015. Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology 52: 805-809. DOI:

Pedraza RA, Williams-Linera G. 2003. Evaluation of native tree species for the rehabilitation of deforested areas in a Mexican cloud forest. New Forests 26: 83-99. DOI:

Poorter L. 2007. Are species adapted to their regeneration niche, adult niche, or both? The American Naturalist 169: 433-442. DOI:

Poorter L, Bongers F. 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87: 1733-1743. DOI:[1733:LTAGPO]2.0.CO;2.

Poorter L, Wright J, Ackerly D, Condit R, Ibarra-Manríquez G, Harms KE, Harms KE, Licona JC, Martinez-Ramos M, Mazer SJ. 2008. Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89: 1908-1920. DOI:

Popma J, Bongers F, Werger MJA. 1992. Gap-dependence and leaf characteristics of trees in a tropical lowland rain forest in Mexico. Oikos 63: 207-214. DOI:

R Core Team. 2017. R: A language and environment for statistical computing. Version 3.4.2. The R Foundation for Statistical Computing. Vienna, Austria.

Rüger N, Wirth C, Wright SJ, Condit R. 2012. Functional traits explain light and size response of growth rates in tropical tree species. Ecology 93: 2626-2636. DOI:

SEMARNAT. 2002. Norma Oficial Mexicana NOM-021-RECNAT 2000. Diario Oficial 31, December 2000. Mexico.

Spasojevic MJ, Yablon EA, Oberle B, Myers JA. 2014. Ontogenetic trait variation influences tree community assembly across environmental gradients. Ecosphere 5: article 129. DOI:

Toledo-Aceves T, López-Barrera F, Vásquez-Reyes V. 2017. Preliminary analysis of functional traits in cloud forest tree seedlings. Trees 31: 1253-1262. DOI:

Violle C, Navas ML, Vile D. 2007. Let the concept of trait be functional. Oikos 116: 882-892. DOI:

Westoby M, Wright IJ. 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution 21: 261-268. DOI:

Williams-Linera G, Alvarez-Aquino C, Pedraza RA. 2010. Forest restoration in the tropical montane cloud forest belt of central Veracruz, Mexico. In: Bruijnzeel LA, Scatena FN, Hamilton LS, eds. Tropical montane cloud forests: Science for conservation and management. Cambridge: Cambridge University Press, 618-627.

Williams-Linera G, Toledo-Garibaldi M, Gallardo-Hernández C. 2013. How heterogeneous are the cloud forest communities in the mountains of central Veracruz, Mexico? Plant Ecology 214: 685-701. DOI:

Williams-Linera G, López-Barrera F, Bonilla-Moheno M. 2015. Estableciendo la línea de base para la restauración del bosque de niebla en un paisaje periurbano. Madera y Bosques 21: 89-101. DOI:

Williams-Linera G, Alvarez-Aquino C, Muñiz-Castro MA, Pedraza RA. 2016. Evaluación del éxito de la restauración del bosque nublado en la región de Xalapa, Veracruz. In: Ceccon E, Martínez-Garza C, eds. Experiencias mexicanas en la restauración de los ecosistemas Cuernavaca, Mexico: UNAM, CRIM, UAEM, CONABIO, 81-101.

Wortley L, Hero JM, Howes M. 2013. Evaluating ecological restoration success: a review of the literature. Restoration Ecology 21: 537-543. DOI: 10.1111/rec.12028

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender- Bares J, Chapin T, Cornelissen JHC, Diemer M. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827. DOI:

Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA. 2007. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany 99: 1003-1015. DOI:

How to Cite
Williams-Linera, G., & Manrique-Ascencio, A. (2020). Functional traits of tree saplings and adults in a tropical cloud forest restoration context. Botanical Sciences, 98(1), 76-85.