Environmental filters determine the distribution of tree species in a threatened biodiversity hotspot in western Mexico

Keywords: Biodiversity hotspot, environmental varaibles, Pinus, Quercus, species richness


Background: Analyzing interactions between vegetation and environmental factors at regional scales provide information for the understanding of species assemblages.

Hypotheses: Environmental restrictions at higher elevations produce a decreasing species richness pattern along an elevational gradient and the climatic variables related to temperature and precipitation are the main filters of species distribution.

Objectives: (1) To identify the different assemblages of tree species occurring in a biodiversity hotspot; (2) to analyze the pattern of tree species richness along an elevational gradient; and (3) to analyze the environmental filters that determine the species distribution.

Study site: Serranías Meridionales of Jalisco in western Mexico.

Period of study: 2016-2018.

Methods: Thirty-three rectangular 0.1 ha plots were established for vegetation and environmental characterization. Cluster and canonical correspondence analyses were conducted to analyze tree species composition. We defined three groups of variables (climatic, relief and soil) to evaluate the influence of environmental filters. We used generalized linear models to assess the contribution of each group to the spatial variation in species richness.

Results: A total of 63 tree species were recorded. The cluster analysis defined eight groups within three forest types. The species richness showed a hump-shaped pattern along the elevational gradient and the climatic and soil variables explained a considerable amount of variation in the species richness.

Conclusions: The tree species richness in the Serranías Meridionales de Jalisco is dominated by a striking number of Pinus and Quercus species. This biodiversity hotspot is an important site for the understanding of tree ecological diversification in Mexico.


Download data is not yet available.

Author Biography

Ken Oyama, Escuela Nacional de Estudios Superiores Unidad Morelia UNAM

Investigador Titular C, SNI nivel 3

Environmental filters determine the distribution of tree species in a threatened biodiversity hotspot in western Mexico



Abrams MD. 1990. Adaptations & Responses to Drought in Quercus Species. Tree Physiology 7: 227–238. DOI: https://doi.org/10.1093/treephys/7.1-2-3-4.227

Abrams MD. 2003. Where has all the white oak gone? BioScience 53: 927–939. DOI: https://doi.org/10.1641/0006-3568

Aguilar-Romero R, García-Oliva F, Pineda-García F, Torres I, Peña-Vega E, Ghilardi A, Oyama K. 2016. Patterns of distribution of nine Quercus species along an environmental gradient in a fragmented landscape in central Mexico. Botanical Sciences 94: 471–482. DOI: 10.17129/botsci.620

Aranda I, Ramírez-Valiente JA, Rodríguez-Calcerrada J. 2014. Características funcionales que influyen en la respuesta a la sequía de las especies del género Quercus: variación inter- e intra-específica. Ecosistemas. Revista cientifíca de ecología y medio ambiente 2: 27–36. DOI: 10.7818/ECOS.2014.23-2.05

Belbin L. 1995. A multivariate approach to the selection of biological reserves. Biodiversity and Conservation 4: 951–963. DOI: https://doi.org/10.1007/BF00058206

Belbin L. 2003. PATN A revised USER ’ s Guide. CSIRO Division of Wildlife and Ecology.: Tasmania, Australia

Bello F de, Lavorel S, Lavergne S, Albert CH, Boulangeat I, Mazel F, Thuiller W. 2012. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36: 393–402. DOI: 10.1111/j.1600-0587.2012.07438.x

Borcard D, Gillet F, Legendre P. 2011. Numerical Ecology With R. Numerical Ecology with R. Springer: New York, Dordrecht London Heidelberg. DOI: 10.1007/978-1-4419-7976-6

Bremmer JM. 1996. Nitrogen-total. In: Sparks D, Page AL, Helmke PA, Loerppert RGH, Soltanpour PN, Tabatabai MA, Jhonson CT and Sumner ME (eds) Methods of soil analysis part 3: chemical analysis. Soil Science Society of American and American Society of Agronomy: Madison, USA, 1085–1121

Cavender-Bares J. 2018. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytologist 221: 669–692. DOI: 10.1111/nph.15450

Cavender-Bares J, Holbrook NM. 2001. Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell and Environment 24: 1243–1256. DOI: 10.1046/j.1365-3040.2001.00797.x

Cavender-Bares J, Kitajima K, Bazzaz FA. 2004. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecological Monographs 74: 635–662. DOI: https://doi.org/10.1890/03-4007

Cavender-Bares J, Kothari S, Meireles JE, Kaproth MA, Manos PS, Hipp AL. 2018. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. American Journal of Botany 105: 565–586. DOI: 10.1002/ajb2.1049

Challenger A, Caballero J. 1998. Utilización y conservación de los ecosistemas terrestres de México : pasado, presente y futuro. Comisión Nacional para el Concimiento y Uso de la Biodiversidad: Mexico city, Mexico

Colwell RK, Rahbek C, Gotelli NJ. 2004. The Mid‐Domain Effect and Species Richness Patterns:What Have We Learned So Far? The American Naturalist 163: E1–E23. DOI: 10.1086/382056

Concilio M, Chen J, Ma S, North M. 2009. Precipitation drives interannual variation in summer soil respiration in a Mediterranean-climate, mixed-conifer forest. Climatic Change 92: 109–122. DOI: https://doi.org/10.1007/s10584-008-9475-0

Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E. 2014. An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology 34: 2427–2437. DOI: 10.1002/joc.3848

Curtis J, Mcintosh R. 1951. An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology 32: 476–496. DOI: 10.2307/1931725

De la Riva EG, Pérez-Ramos I, Navarro-Fernández C, Olmo MC, Marañon T, Villar R. 2014. Rasgos funcionales en el género Quercus: estrategias adquisitivas frente a conservativas en el uso de recursos. Revista Ecosistemas 23: 82–89. DOI: 10.7818/RE.2014.23-2.00

Dobson AJ. 2002. Introduction to Generalized Linear Models. CRC Press: Boca Raton, Fl USA

Dubuis A, Giovanettina S, Pellissier L, Pottier J, Vittoz P, Guisan A. 2013. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science 24: 593–606. DOI: 10.1111/jvs.12002

Eguiluz-Piedra T. 2003. The present situation of mexican forestry. FAO Advisory Committee on Paper and Wood Products. Oaxaca, Mexico

Encina-Domínguez JA, Arévalo S. JR, Estrada-Castillón E, Mellado B. M. 2018. Environmental and soil variables affecting the structure and floristic woody composition of oak forests of northeastern Mexico. Turkish Journal of Agriculture and Forestry 42: 262–271. DOI: 10.3906/tar-1711-31

Francis AP, Currie DJ. 2003. A Globally Consistent Richness‐Climate Relationship for Angiosperms. The American Naturalist 161: 523–536. DOI: 10.1086/368223

Gernandt DS, Geada López G, Ortiz García S, Liston A. 2005. Phylogeny and classification of Pinus. Taxon 54: 29–42. DOI: 10.2307/25065300

Gernandt DS, Pérez de la Rosa JA. 2014. Biodiversidad de Pinophyta (coníferas) en México. Revista Mexicana de Biodiversidad 85: 126–133. DOI: 10.7550/rmb.32195

González-Villarreal LM. 1986. Contribución al conocimiento del género Quercus (Fagaceae) en el estado de Jalisco. Instituto de Botánica, Universidad de Guadalajara.: Guadalajara, México.

González-Villarreal LM. 2003. Two new species of oak ( Fagaceae , Quercus sect . Lobatae ) from the Sierra Madre del Sur , Mexico. Brittonia 55: 49–60

González-Villarreal LM. 2018. Dos nuevas especies de encinos (Quercus: Fagaceae), adicionales para la Flora de Jalisco y Áreas Colindantes, en el Occidente de México. ibugana 9: 47–72

Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M. 2011. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews 87: 111–127. DOI: 10.1111/j.1469-185x.2011.00187.x

Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Avalos SV, Cavender-Bares J. 2018. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytologist 217: 439–452. DOI: 10.1111/nph.14773

Huffman EWD. 1977. Performance of a new automatic carbon dioxide coulometer. Microchemical Journal 22: 567–573

Hutchinson MF. 2006. Anusplin Version 4.36 User Guide. Centre for Resource and Environmental Studies: Canberra, Australia

Jiménez-Alfaro B, Marcenó C, Bueno Á, Gavilán R, Obeso JR. 2014. Biogeographic deconstruction of alpine plant communities along altitudinal and topographic gradients. Journal of Vegetation Science 25: 160–171. DOI: 10.1111/jvs.12060

Kappelle M, van Uffelen JG. 2006. Altitudinal zonation of montane oak forests along climate and soil gradients in Costa Rica. Ecological Studies. Analysis and synthesis. Berlin Heidelberg, 39–50

Kessler M. 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149: 181–193

Kessler M, Kluge J, Hemp A, Ohlemüller R. 2011. A global comparative analysis of elevational species richness patterns of ferns. Global Ecology and Biogeography 20: 868–880. DOI: 10.1111/j.1466-8238.2011.00653.x

Kluge J, Kessler M, Dunn RR. 2006. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography 15: 358–371. DOI: 10.1111/j.1466-822X.2006.00223.x

Kraft NJB, Ackerly DD. 2014. Assembly of Plant Communities. Ecology and the Environment. Springer New York: New York, NY, 67–88. DOI: 10.1007/978-1-4614-7501-9_1

Kromer T, Kessler M, Robbert Gradstein S, Acebey A. 2005. Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32: 1799–1809. DOI: 10.1111/j.1365-2699.2005.01318.x

Legendre P, Legendre L. 2012. Numerical ecology.

Lomolino M. 2001. Elevation gradients of species-density: historical and prospective views The Geography of Sound View project Conservation Biogeography View project.

Luzuriaga AL, Sánchez AM, Maestre FT, Escudero A. 2012. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS ONE 7: 1–9. DOI: 10.1371/journal.pone.0041270

Manos PS, Doyle JJ, Nixon KC. 1999. Phylogeny, Biogeography, and Processes of Molecular Differentiation in. Molecular Phylogenetics and Evolution 12: 333–349

Mccain CM, Grytnes J-A. 2010. Elevational Gradients in Species Richness. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, 1–10. DOI: 10.1002/9780470015902.a0022548

Meave JA, Rincón A, Romero-Romero MA. 2006. Oak Forests of the Hyper-Humid Region of La Chinantla, Northern Oaxaca Range, Mexico. Ecology and Conservation of Neotropical Montane Oak Forests. Springer-Verlag: Berlin/Heidelberg, 113–125. DOI: 10.1007/3-540-28909-7_9

Morales-Saldaña S. 2017. Riqueza y distribución del género Quercus en la Sierra Madre del Sur, México. (Master´s Thesis). Universidad Nacional Autónoma de México. México.

Morin PJ. 2011. Community ecology. Community Ecology. Wiley-Blackwell. DOI: 10.1016/0025-5408(96)80019-5

Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36

Nixon K. 1993. Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Annales des sciences forestières 50: 25–34

Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C. 2008. Scale effects and human impact on the elevational species richness gradients. Nature 453: 216–219. DOI: 10.1038/nature06812

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin P, B O’Hara R, Simpson G, Solymos P. 2016. vegan: Community Ecology Package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Version 2.4-0. URL https://CRAN.R-project.org/package=vegan.

Olvera-Vargas M, Figueroa-Rangel BL, Vázquez-López JM. 2010. Is there environmental differentiation in the Quercus - dominated forests of west-central Mexico ? Plant Ecology 211: 321–335. DOI: 10.1007/s11258-010-9792-z

Pärtel M. 2002. Local Plant Diversity Patterns and Evolutionary History. Ecology 83: 2361–2366

Pickering CM, Green K. 2009. Vascular plant distribution in relation to topography, soils and micro-climate at five GLORIA sites in the Snowy Mountains, Australia. Australian Journal of Botany 57: 189. DOI: 10.1071/BT08133

Qian H. 1999. Spatial pattern of vascular plant diversity in North America north of Mexico and its floristic relationship with Eurasia. Annals of Botany 83: 271–283. DOI: 10.1006/anbo.1998.0816

Rao M, Steinbauer MJ, Xiang X, Zhang M, Mi X, Zhang J, Ma K, Svenning JC. 2018. Environmental and evolutionary drivers of diversity patterns in the tea family (Theaceae s.s.) across China. Ecology and Evolution 8: 11663–11676. DOI: 10.1002/ece3.4619

Reich PB, Wright IJ, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The Evolution of Plant Functional Variation : Traits , Spectra , and Strategies Source. International Journal of Plant Sciences 164: S143–S164

Robertson PG, Coleman DC, Bledsoe CS, Sollins P. 1999. Standard soil methods for long-term ecological research (LTER). University Press: Oxford, New York

Rodríguez-Correa H, Oyama K, MacGregor-Fors I, González-Rodríguez A. 2015. How Are Oaks Distributed in the Neotropics? A Perspective from Species Turnover, Areas of Endemism, and Climatic Niches. International Journal of Plant Sciences 176: 222–231. DOI: 10.1086/679904

Rzedowski J. 2006. Vegetación de México.

Salamon-Albert É, Abaligeti G, Ortmann-Ajkai A. 2017. Functional response trait analysis improves climate sensitivity estimation in beech forests at a trailing edge. Forests 8: 324. DOI: https://doi.org/10.3390/f8090324

Scherrer D, Körner C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38: 406–416. DOI: 10.1111/j.1365-2699.2010.02407.x

Shen ZH, Fang JY, Chiu CA, Chen TY. 2015. The geographical distribution and differentiation of Chinese beech forests and the association with Quercus. Applied Vegetation Science 18: 23–33. DOI: 10.1111/avsc.12108

Styles BT. 1993. Genus Pinus: a Mexican preview. In: Ramammoorthy TP, Bye R, Lot A and Fa J (eds) Biological diversity of Mexico. Nueva York: Oxford University Press., 397–420

Tang Z, Fang J. 2006. Temperature variation along the northern and southern slopes of Mt. Taibai, China. Agricultural and Forest Meteorology 139: 200–207. DOI: 10.1016/j.agrformet.2006.07.001

Tello JS, Myers JA, Macía MJ, Fuentes AF, Cayola L, Arellano G, Loza MI, Torrez V, Cornejo M, Miranda TB, Jørgensen PM. 2015. Elevational Gradients in β-Diversity Reflect Variation in the Strength of Local Community Assembly Mechanisms across Spatial Scales. PLOS ONE 10: e0121458. DOI: 10.1371/journal.pone.0121458

Torres-Miranda A, Luna-Vega I, Oyama K. 2011. Conservation biogeography of red oaks (Quercus, Section Lobatae) in Mexico and Central America. American Journal of Botany 98: 290–305. DOI: 10.3732/ajb.1000218

Torres-Miranda A, Luna-Vega I, Oyama K. 2013. New approaches to the biogeography and areas of endemism of red oaks (Quercus L., Section Lobatae). Systematic Biology 62: 555–573. DOI: 10.1093/sysbio/syt021

United Nations Environment Programme. 1992. World Atlas of Desertification. United Nations Environment Programme / Edward Arnold: London. DOI: https://doi.org/10.1002/ldr.3400030407

Valencia-A. S. 2004. Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México 75: 33–53

Vargas-Rodriguez YL, Urbatsch E, Karaman-Castro V, Figueroa-Rangel BL. 2017. Acer binzayedii (Sapindaceae), a new maple species from Mexico. Brittonia 69: 249–252. DOI: 10.1007/s12228-017-9465-5

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and Community Ecology. Annual Review of Ecology and Systematics 33: 475–505. DOI: 10.1146/annurev.ecolsys.33.010802.150448

Xu X, Dimitrov D, Shrestha N, Rahbek C, Wang Z. 2019. A consistent species richness–climate relationship for oaks across the Northern Hemisphere. Global Ecology and Biogeography 00: 1–16. DOI: 10.1111/geb.12913

Zhou J, Lang X, Du B, Zhang H, Liu H, Zhang Y, Shang L. 2016. Litterfall and nutrient return in moist evergreen broad-leaved primary forest and mixed subtropical secondary deciduous broad-leaved forest in China. European Journal of Forest Research 135: 77–86. DOI: 10.1007/s10342-015-0918-7

Zobel M. 2016. The species pool concept as a framework for studying patterns of plant diversity. Journal of Vegetation Science 27: 8–18. DOI: 10.1111/jvs.12333

Zuur A, Ieno E, Walker N, Saveliev A, Smith G. 2009. Mixed effects models and extensions in ecology with R. Springer Science & Business Media: New York, NY. DOI: 10.1007/978-0-387-87458-6_1

How to Cite
Arenas-Navarro, M., García-Oliva, F., Torres-Miranda, A., Téllez-Valdés, O., & Oyama, K. (2020). Environmental filters determine the distribution of tree species in a threatened biodiversity hotspot in western Mexico. Botanical Sciences, 98(2), 219-237. https://doi.org/10.17129/botsci.2398