Proximal chemical analysis and secondary metabolites in Washingtonia robusta fruit (Arecaceae): relevance for the feeding of wildlife and human

  • Lucila Armenta-Méndez Centro de Ivestigación en Alimentación y Desarrollo A.C.
  • María Magdalena Ortega-Nieblas Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo, Sonora
  • Juan Pablo Gallo-Reynoso Centro de Investigación en Alimentación y Desarrollo, A.C. Guaymas, Sonora
  • Alfonso A. Gardea Centro de Investigación en Alimentación y Desarrollo, A.C. Guaymas, Sonora
  • Benjamin Wilder Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, Arizona
  • Gustavo González-Aguilar Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora
  • Alejandra M. Preciado-Saldaña Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora
keywords: Antioxidants, desert oasis, edible fruits, plant defenses, trophic chain


Background: Washingtonia robusta fruits are a staple for birds, small and medium-size mammals, and humans. However, quantitative data of their nutritional contribution has remained unknown. This is the first report on the phytochemical components found in fruit pulp and seeds.

Questions: Does pulp compounds favor its consumption and contribute with nutrients for wildlife and humans? Do seed contents favor ecological interactions for germination and plantlet development?

Species study: Washingtonia robusta H. Wendl.

Study site and dates: Sierra El Aguaje, Sonora, Mexico, February - April 2016

Methods: Chemical and secondary metabolite analyses were carried out from extracts via phytochemical coloring tests and ultra-resolution liquid chromatography. Antioxidant activity was analyzed by DPPH.

Results: Washingtonia robusta seeds contain 73 % sugars, 7.4 % protein, 8.4 % humidity, 4.3 % ashes, 8.7 % fat and 0.2 % calcium, while cyanogenic glycosides content was 0.8 ?g/g. Pulp has 71 % sugars, 10.8 % protein, 1.6 % humidity, 5.5 % ashes, 9.4 % fat and 1.5 % calcium, and cyanogenic glycosides reached 0.2 ?g/g. Alkaloids, tannins, saponins, phenols, and flavonoids were more abundant in seeds than in pulp. The DPPH assay expressed in Trolox equivalents indicated antioxidant capacity.

Conclusions: Washingtonia robusta pulp is an important source of sugars and natural antioxidants for wildlife and human consumption. Occurrence of secondary metabolites prevents pathogens in seeds, also they could be beneficial for germination and initial plantlet development.


Download data is not yet available.

Author Biography

Lucila Armenta-Méndez, Centro de Ivestigación en Alimentación y Desarrollo A.C.
Estudiante de Doctorado en Ciencias
Proximal chemical analysis and secondary metabolites in <em>Washingtonia robusta</em> fruit (Arecaceae): relevance for the feeding of wildlife and human


AOAC. 1990. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Washington, D.C.

Acamovic T, Brooker JD. 2005. Biochemistry of plant secondary metabolites and their effects in animals. Proceedings of the Nutrition Society 64: 403-412. DOI: 10.1079/PNS2005449.

Agostino-Costa T. 2018. Bioactive compounds and health benefits of some palm species traditionally used in Africa and the Americas–a review. Journal of Ethnopharmacology 224: 202-229. DOI:

Al-Farsi MA, Yong Lee Ch. 2008. Nutritional and Functional Properties of Dates: A Review. Critical Reviews in Food Science and Nutrition, 48: 877-887, DOI: 10.1080/10408390701724264

Asmussen CB, Dransfield J, Deickmann V, Barfod A, Pintaud JC, Baker WJ. 2006. A new subfamily classification of the palm family (Arecaceae): evidence from plaste DNA phylogeny. Botanical Journal of the Linnean Society 151: 15-38. DOI: 10.1111/j.1095-8339.2006.00521.

Barfod AS, Hagen M, Borchsenius F. 2011. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Annals of Botany 108: 1503-1516. DOI: 10.1093/aob/mcr192.

Benahmed-Bouhafsoun A, Djebbar H, Kaid-Harche M. 2015. Determination of Polyphenolic Compounds of Washingtonia robusta H. Wendl Extracts. Acta Physica Polonica A, 128: 465-466. DOI: 10.12693/APhysPolA. 128.B-465

Besbes S, Blecker C, Deroanne C, Drira NE, Attia H. 2004. Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chemistry, 84: 577–584. DOI: 10.1016/S0308-8146(03)00281-4

Bogan MT, Noriega-Felix N, Vidal-Aguilar SL, Findley LT, Lytle DA, Gutiérrez-Ruacho OG, Varela-Romero A. 2014. Biogeography and conservation of aquatic fauna in spring-fed tropical canyons of the southern Sonoran Desert, Mexico. Biodiversity and Conservation 23: 2705-2748. DOI: 10.1007/s10531-014-0745-z.

Bullock SH, Heath D. (2006). Growth rates and age of native palms in the Baja California desert. Journal of arid environments, 67: 391-402. DOI: 10.1016/j.jaridenv.2006.03.002

Bjørklund, G, Dadar M, Chirumbolo S, Lysiuk R. 2017. Flavonoids as detoxifying and pro-survival agents: What's new? Food and Chemical Toxicology 110: 240-250. DOI: 10.1016/j.fct.2017.10.039.

Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28: 25-30. DOI: 10.1016/S0023-6438(95)80008-5.

Brokamp G, Valderrama N, Mittelbach M, Barfod AS, Weigend M. 2011. Trade in palm products in north-western South America. The Botanical Review, 77: 571-606. DOI 10.1007/s12229-011-9087-7

Cipollini ML. 2000. Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions. Revista Chilena de Historia Natural, 73: 421-440

Cornett JW. 1987. Naturalized population of the desert fan palm, Washingtonia filifera. In Death Valley National Monument. In: Hall CA Jr, Doyle-Jones V, eds. White Mountain Research Station Symposium: Plant Biology of Eastern California, 167-174.

Co?kuner Y, Gökbudak A. 2016. Dimensional specific physical properties of fan palm fruits, seeds and seed coats (Washingtonia robusta). International Agrophysics 30: 301. DOI: 10.1515/intag-2016-0004.

Cuéllar A. 1983. Química de los fármacos naturales. Universidad de La Habana. La Habana.

Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. 2013. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry 72: 1-20. DOI: 10.1016/j.plaphy.2013.05.009.

DeGabriel JL, Moore BD, Felton AM, Ganzhorn JU, Stolter C, Wallis IR, Foley WJ. 2014. Translating nutritional ecology from the laboratory to the field: milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 123: 298-308. DOI: 10.1111/j.1600-0706.2013.00727. x.

Dirzo R. 1985. Metabolitos secundarios en las plantas, ¿Atributos panglossianos o de valor adaptativo? Ciencia 36: 137-145.

Domínguez X. 1982. Métodos de Investigación Fitoquímica. México: Ed. Limusa.

Downey MO, Dokoozlian NK, Krstic MP. 2006. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. American Journal of Enology and Viticulture, 57: 257-268. ISSN 0002-9254.

Felger RS, Moser MB. 1985. People of the Desert and Sea: Ethnobotany of the Seri Indians University of Arizona Press, Tucson, Arizona, EE. UU

Felger RS, Joyal E. 1999. The palms (Arecaceae) of Sonora, Mexico. Aliso: A Journal of Systematic and Evolutionary Botany 18: 1–18. Available at: http://scholarship .claremon iso/v ol18/i ss1/11

Felger RS, Carnahan S, Sánchez-Escalante J. 2017. Oasis at the Desert Edge: Flora of Cañón del Nacapule, Sonora, Mexico. Proceedings of the Desert Laboratory, Contribution 1:1–220.

González-Aguilar GA, Blancas-Benítez FJ, Sayago-Ayerdi SG. 2017. Polyphenols associated with dietary fibers in plant foods: Molecular interactions and bioaccessibility. Current Opinion in Food Science, 13: 84-88. DOI: 10.1016/j.cofs.2017.03.004.

Grenade R, Nabhan GP, Olvera MC. 2016. Oases of the Baja California peninsula as sacred spaces of agrobiodiversity persistence. Agriculture and Human Values, 33: 455-474. DOI: 10.1007/s10460-015-9621-z.

Guevara L, Jáuregui I, Damelis J, Stauffer FW. 2014. Estructura floral de dos especies de Trachycarpeae (Arecaceae). Revista de Biología Tropical, 62:1137-1146. ISSN: 0034-7744.

Halliwell B, Rafter J, Jenner A. 2005. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? The American Journal of Clinical Nutrition 81: 268S-276S. ISSN: 00029165.

Haque MR, Bradbury JH. 2004. Preparation of linamarin from cassava leaves for use in a cassava cyanide kit. Food Chemistry 85: 27-29. DOI: 10.1016/j.foodchem.2003.06.001.

Harborne JB. 1975. Flavonoid bisulfates and their co-occurrences with ellagic acid in the Bixaceae, Frankeniaceae, and related families. Phytochemistry 14:1331–1337.

Henderson A. 1990. Arecaceae. Part I. Introduction and the Iriarteinae. Flora Neotropica Monograph 53. New York Botanical Garden, Bronx, NY.

Hodgson WC. 2001. Food plants of the Sonoran Desert. University of Arizona Press.

Jaramillo-Jaramillo C, Jaramillo-Espinoza A, D’Armas H, Troccoli L, Rojas de Astudillo L, Rojas L. 2016. Concentrations of alkaloids, cyanogenic glycosides, polyphenols and saponins in selected medicinal plants from Ecuador and their relationship with acute toxicity against Artemia salina. Revista de Biología Tropical, 64: 1171-1184. DOI:10.15517/rbt.v64i3.19537.

Joyal E. 1999. The use of Sabal uresana (Arecaceae) and others palms in Sonora, Mexico. Economic Botany, 50: 429-445. DOI: 10.1007/BF02866526

Klimova A, Hoffman J, Gutiérrez-Rivera J, León de la Luz J, Ortega-Rubio A. 2017. Molecular genetic analysis of two native desert palm genera, Washingtonia and Brahea, from the Baja California Peninsula and Guadalupe Island. Ecology and Evolution 7: 4919–4935. DOI:

Lewis CE, Zona S. 2000. A survey of cyanogenesis in palms (Arecaceae). Biochemical Systematics and Ecology, 28: 219-228. DOI:

Listabarth, C. 2001. Palm pollination by bees, beetles and flies: why pollinator taxonomy does not matter. The case of Hyospathe elegans (Arecaceae, Arecoidae, Areceae, Euterpeinae). Plant Species Biology 16: 165-18. DOI: 10.1046/j.1442-1984.2001. 00061.x.

McKey D. 1974. Adaptive patterns in alkaloid physiology. The American Naturalist 108: 305-320.

Martínez A, Ospina F, Valencia G, Jiménez N. 2003. Manual de Prácticas de Laboratorio de Farmacognosia y Fitoquímica 2003. Universidad de Antioquia. Facultad de Química Farmacéutica. Departamento de Farmacia. Medellín. Colombia

Martínez del Rio C. 1994. Nutritional ecology of fruit-eating and flower-visiting birds and bats. In: Chivers DJ, Langer P, eds. The Digestive System in Mammals: Food form and function. Cambridge: Cambridge University Press, 103-127.

Martínez-Valverde I, Periago MJ, Ros G. 2000. Significado nutricional de los compuestos fenólicos de la dieta. Archivos Latinoamericanos de Nutrición 50: 5-18.

Mattila P, Kumpulainen J. 2002. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry 50: 3660-3667. DOI: 10.1021/jf020028p.

Mazmanci MA. 2011. Ethanol production from Washingtonia robusta fruits by using commercial yeast. African Journal of Biotechnology 10: 48-53. DOI: 10.5897/AJB10.502.

Mena-Valdés L, Tamargo-Santos B, Salas-Olivet E, Plaza-Paredes LE, Blanco-Hernández Y, Otero-González A, Sierra-González G. 2015. Determination of saponins and others secondary metabolites in aqueous extracts of Sapindus saponaria L. Revista Cubana de Plantas Medicinales, 20:106-116.

Montiel-Herrera M, Camacho-Hernández IL, R??os-Morgan A, Delgado-Vargas, F. 2004. Partial physicochemical and nutritional characterization of the fruit of Vitex mollis (Verbenaceae). Journal of Food Composition and Analysis, 17: 205-215. DOI:10.1016/j.jfca.2003.09.001

Murdoch JD, Buyandelger S, Cypher BL. 2009. Patterns of seed occurrence in corsac and red fox diets in Mongolia. Journal of Arid Environments 73: 381-384. ISSN: 0140-1963.

Nehdi IA. 2011. Characteristics and composition of Washingtonia filifera (Linden ex André) H. Wendl. seed and seed oil. Food Chemistry 126: 197-202. DOI: 10.1016/j.foodchem.2010.10.099.

Nevo O, Valenta K, Tevlin AG, Omeja P, Styler SA, Jackson DJ, Chapman C, Ayasse M. 2017. Fruit defence syndromes: the independent evolution of mechanical and chemical defences. Evolutionary Ecology, 31: 913-923. DOI: 10.1007/s10682-017-9919-y.

Nwokoro O, Ogbonna JC, Ubani CS, Okpala GN, Ofodile OE. 2010. Determination of cyanide in Amanitia muscaria samples using alkaline picrate method. Pakistan Journal of Nutrition, 9: 134-136. ISSN: 1680-5194.

Okawa M, Kinjo J, Nohara T, ONO M. 2001. DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biological and Pharmaceutical Bulletin 24: 1202-1205. DOI: 10.1248/bpb.24.1202.

Rea AM. 1981. Resource utilization and food taboos of Sonoran Desert peoples. Journal of Ethnobiology, 1: 69-83

Saltveit ME. 2017. Synthesis and metabolism of phenolic compounds. Fruit and Vegetable Phytochemicals: Chemistry and Human Health. Eds. John Wiley & Sons.

Silva KD, Sirasa MS. 2016. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chemistry 238: 203-208. DOI: 10.1016/j.foodchem.2016.08.102.

Singh, G. 2010. Plant Systematics: An Integrated approach. New Hampshire, USA: Science Publishers Inc.

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.

Suganthy N, Devi KP, Nabavi SF, Braidy N, Nabavi SM. 2016. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomedicine & Pharmacotherapy 84: 892-908. DOI: 10.1016/j.biopha.2016.10.011.

Tregear A. 2011. Progressing knowledge in alternative and local food networks: Critical reflections and a research agenda. Journal of Rural Studies 27: 419-430. DOI: 10.1016/j.jrurstud.2011.06.003.

Vasco C, Ruales J, Kamal-Eldin A. 2008. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry 111: 816-823. DOI: 10.1016/j.foodchem.2008.04.


Velderrain-Rodríguez GR, Torres-Moreno H, Villegas-Ochoa MA, Ayala-Zavala JF, Robles-Zepeda RE, Wall-Medrano A, González-Aguilar G A. 2018. Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘Ataulfo’ mango peel on LS180 Cells. Molecules 23: 695. DOI: 10.3390/molecules23030695.

Wehncke EV, López-Medellín X, Ezcurra E. 2009. Patterns of frugivory, seed dispersal and predation of blue fan palms (Brahea armata) in oasis of northern Baja California. Journal of Arid Environments 73: 773-783. DOI: 10.1016/j.jaridenv.2009.03.007.

Wehncke EV, López-Medellín X. 2014. Living at the edge: the blue fan palm desert oases of northern Baja California In: Wehncke EV, Lara-Lara JR. Álvarez- Borrego S, Ezcurra E, eds. Conservation Science in Mexico’s Northwest. México, D. F: UCMexus, SEMARNAT and INECC-Semarnat Press, 311-330.

Whitehead, SR, Jeffrey CS, Leonard MD, Dodson CD, Dyer LA, Bowers MD. 2013. Patterns of secondary metabolite allocation to fruits and seeds in Piper reticulatum. Journal of Chemical Ecology 39: 1373-1384. DOI: 10.1007/s10886-013-0362-4.

Wink M. 2008. Ecological roles of alkaloids. In: E. Fattorusso and O. Taglialatela-Scafati, eds. Modern alkaloids: structure, isolation, synthesis and biology. Wiley-VCH, Verlag GmbH & Co, 3-24. ISBN: 978-3-527-31521-5

Winkel-Shirley B. 2002. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiology 126: 485-493. DOI: 10.1104/pp.126.2.485.

Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64: 555-559. DOI: 10.1016/S0308-8146(98)00102-2

Zona S, Henderson A. 1989. A review of animal-mediated seed dispersal of palms. Selbyana, 6-21.

How to Cite
Armenta-Méndez, L., Ortega-Nieblas, M. M., Gallo-Reynoso, J. P., Gardea, A. A., Wilder, B., González-Aguilar, G., & Preciado-Saldaña, A. M. (2019). Proximal chemical analysis and secondary metabolites in Washingtonia robusta fruit (Arecaceae): relevance for the feeding of wildlife and human. Botanical Sciences, 97(2), 155-166.