Ethnopharmacology of the Asteraceae Family in Mexico
La etnofarmacología de la familia Asteraceae en México

Virginia Gabriela Cilia-López1*, Raquel Carriño-Cortés2, and Luis Ricardo Zurita-Salinas3

1 Facultad de Medicina-CIACYT, Universidad Autónoma de San Luis Potosí, México.
2 Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo Pachuca, Hidalgo, México.
3 Licenciatura en Ciencias Ambientales y Salud, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, México.
*Author for correspondence: gabriela.cilia@uaslp.mx

Abstract
Background: In Mexico, the Asteraceae are part of traditional knowledge where its members have several uses, but they are particularly remarkable in traditional medicine and are used for different purposes.

Questions: What pharmacologically studies have been carried out with Asteraceae species used in Mexican traditional medicine? What pharmacological activities have been tested? What compounds are responsible for the tested activities?

Species studied: Asteraceae species used in Mexican traditional medicine pharmacologically tested.

Methods: A database including scientific studies on Asteraceae species which studies on pharmacological activity or phytochemical characterization was compiled and analyzed.

Results: From 249 reviewed studies only 202 fulfilled the criteria for our analysis. A total of 101 species distributed in 65 genera and 16 tribes were registered. The tribes Heliantheae and Senecioneae were the most studied. Ageratina pichinchensis, Artemisia ludoviciana, Heliopsis longipes, and Heterotheca inuloides were the most studied species. In Mexico, the Asteraceae family is mainly used in the treatment of diseases or symptoms related to the digestive and respiratory systems. In 48% of the studies some biocidal activity was evaluated but only 21.8% included phytochemical characterizations.

Conclusions: The antimicrobial activity and phytochemical characterizations are the main kind of ethnopharmacological studies for Asteraceae in Mexico. Most of the compounds responsible for the activities have not been identified yet. The uses of Asteraceae in Mexico are similar to other countries emphasizing its cultural importance in the world. Mexican Asteraceae should be prioritized in conservation and bioscreening schemes.

Key words: Compositae, ethnobotany, herbal medicine, natural compounds, traditional knowledge.
Historically, the plant kingdom has been the best source of remedies for a variety of diseases and pain. Plants are primary therapeutic agents used for treating illness, an integral element of health care systems, and the best testimony of cultural importance (Mata et al. 2019). In many cultures, plants are elemental for ancient traditional medicine systems and continue enriching our modern knowledge of herbal medicine. Therefore, medicinal plants have a fundamental role in the maintenance of global human health (Egamberdieva & Teixeira da Silva 2015). Traditional medicine is part of the evolutionary process where humans and plants interact; communities and individuals continue to discover practices and transforming techniques. Many modern drugs have origin in ethnopharmacology and traditional medicine (Helmstädter & Staiger 2014). Pharmaceutical and scientific communities have paid particular attention to medicinal plants; numerous studies have validated the traditional use of plants and characterized phytochemically large species (Salazar-Aranda et al. 2013, Buenz et al. 2018).

The Mexican diversity of vascular plants has been estimated at 23,314 species (Villaseñor 2018), and more than 50% are endemic to the country. More than 3,000 are used as medicinal plants but only a small proportion (1-2%) has been studied (Villaseñor 1993, Espejo-Serna et al. 2004, Salazar-Aranda et al. 2013). Many members of Asteraceae are part of the traditional knowledge of our country where they are used as food, live fences, construction materials, and source of oils, insecticides, and garden ornamentals; however, they are specially used in traditional medicine (Heinrich et al. 1998, Leonti et al. 2005, Canales et al. 2005, Paredes-Flores et al. 2007, Estrada-Castillón et al. 2012, Gómez 2012, Ávila-Urbe et al. 2016, Casas et al. 2016, Vibrans 2016, Lara Reimers et al. 2019).

The Asteraceae or Compositae is one of the largest and most diverse families, comprising 10% of all flowering plant species, rivaled only by Orchidaceae and Fabaceae (Mandel et al. 2019). It includes between 950 and 1,450 genera, with an estimated 25,000 to 35,000 species in the world and is the richest family of Mexican flora in genera and species (Villaseñor 2016, Mandel et al. 2019). Mexico is considered a center of diversification of this family with 417 genera and 3,113 species and it is the richest country for the family in Neotropics (Villaseñor 2018). Its wide distribution, from sea level (dunes or coastal vegetation) to the mountains, is attributed to its excellent dispersal capacity, genetic plasticity, and the presence of a wide variety of secondary metabolites synthesized as a protection strategy against predators or competitors (Villaseñor 2018). The members of Asteraceae are identified by inflorescences arranged in a capitulum or head, surrounded by an involucre with involucral bracts or phyllaries. On the capitulum there are two kinds of flowers: the outermost or ray flowers and the central or disc flowers. All the flowers are gamopetalous and lack of calyx or modified in a variable and peculiar structure called pappus (Villaseñor 1993). Due to its diversity, the Asteraceae family is divided in 36-38 tribes (Funk et al. 2005). In Mexico, there are 24 tribes of native species and two (Arctotideae and Calenduleae) of introduced species (Villaseñor 2018).

The vast diversity in Asteraceae is reflected in the presence of different bioactive compounds important for the pharmaceutical industry too (Kostić et al. 2020). Members of Asteraceae are known by their pharmacological activities as antibacterial, anti-inflammatory, wound-healing, anti-hemorrhagic, antipyretic, hepatoprotective, anti-tussive, antitumor, antiparasitic, and antispasmodic (Carvalho et al. 2018, Panda & Luyten 2018). Several species are used in Mexican traditional medicine since its antibacterial properties (Sharma et al. 2017) and they are mainly used in the treatment of gastrointestinal, respiratory, and dental infectious diseases (Heinrich et al. 1998, Murillo-Álvarez et al. 2001, Hernández et al. 2003, Leonti et al. 2003, Canales et al. 2005, Paredes-Flores et al. 2007, Alonso-Castro et al. 2011, Rosas-Piñón et al. 2012, Sharma et al. 2017, Lara Reimers et al. 2019). Some of the most popular medicinal plants used in México are estafiate (Artemisia ludoviciana), Mexican arnica (Heterotheca inuloides), zoapatle (Montanoa tomentosa), and cempazuchitl (Tagetes erecta).

More than 5,000 compounds have been identified in Asteraceae, generally associated with some pharmacological activity. The presence of sesquiterpene lactones (SQLs), diterpenes, triterpenes, inulin-type fructans, poly-acetylenes, pentacyclic triterpene alcohols, benzofurans, flavones, flavonoids, and unsaturated fatty acids are common compounds in Asteraceae (Heywood et al. 1977a, b, Calabria et al. 2009). The SQLs are the major chemical compounds in Asteraceae, with at least 3,000 known structures involved in the defense against herbivores and parasites The SQLs, acetylenic compounds, and inulin-type fructans are as characteristic of Asteraceae as their inflorescences (Heywood et al. 1977a, b, Heinrich et al. 1998).

Despite the discovery of several secondary metabolites in Asteraceae, they attracted disproportionately little attention in the context of ethnopharmacological research, resulting in few systematic explorations and few commer-
cialized products (Panda et al. 2019, Kostić et al. 2020). In this review we answer the following questions: What pharmacologically studies have been carried out with Asteraceae species used in Mexican traditional medicine? What pharmacological activities have been tested? What compounds are responsible for the tested activities? The goal of our research was to synthesize the knowledge of the ethnopharmacology of the Asteraceae in Mexico.

Materials and methods

We conducted systematic searches for scientific studies of the pharmacological activity, or the phytochemical characterization of Asteraceae used in Mexican traditional medicine. The information was collected from scientific databases including ScienceDirect, Springerlink, Scopus, PubMed, Redalyc, Scielo, EBSCO, ACS Publications, BioMed Central, and Wiley online library, for entries published from 1983 to 2020. The keywords for our searches included: Mexican Asteraceae, medicinal Asteraceae, asteráceas mexicanas, asteráceas medicinales, Mexican traditional medicine, Asteraceae, Compositae. We only include studies that provide information on the collection site, the part used, the species identified, and the herbarium specimen, as recommended by the Guidelines on Good Herbal Processing Practices for Herbal Medicines (WHO 2018).

Species were classified based on the tribe scheme for Mexican Asteraceae by Villaseñor (2018). The nomenclature was based on taxonomic studies for the family including Ortiz-Bermúdez et al. (1998), Cabrera (2001), Funk et al. (2009), Estrada-Castillón & Villarreal-Quintanilla (2010), Schilling & Panero (2011), Villaseñor & Ortiz (2012), García-Sánchez et al. 2014, Redonda-Martínez (2017), Redonda-Martínez (2020), and Villarreal-Quintanilla et al. (2020). To identify the native species to Mexico, the studies of Sosa & De-Nova (2012) and Villaseñor (2016) were consulted. The information was arranged alphabetically by tribe, genus, species, traditional uses, and pharmacological/phytochemical studies.

Results

A total of 249 studies where pharmacological activities and/or phytochemical characterizations were assessed for Asteraceae were found. The analysis of the information was carried out with 202 studies that fulfilled the recommendations of the Guidelines on Good Herbal Processing Practices for Herbal Medicines (Appendix 1). Forty-seven studies were not included since they were conducted with parts of plants (leaves, roots, etc.) or plant material purchased or acquired from laboratories, markets, supermarkets or they did not provide information about herbarium specimen.

A total of 101 species with ethnopharmacological and/or phytochemical studies from 16 tribes and 65 genera were recorded. Heliantheae has been the most studied tribe with 30 species and 19 genera, followed by Senecioneae with 17 species and seven genera (Appendix 1). The remaining tribes registered less than 10 species. The states

Figure 1. Number of collections by state of Mexican Asteraceae with ethnopharmacological studies.
Ethnopharmacology of Asteraceae in Mexico

Table 1. Traditional uses and ethnopharmacological studies of Asteraceae in Mexico

<table>
<thead>
<tr>
<th>Traditional use (illness/affection/symptom)</th>
<th>Mentions in the reviewed studies % (*)</th>
<th>Activity evaluated</th>
<th>Studies performed % (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal disorders/diseases: diarrhea, stomachache, dysentery, gastritis, indigestion, vomit, dyspepsia, deworming, lack of appetite, tapeworm, purge</td>
<td>20.73 (57)*</td>
<td>Antibacterial</td>
<td>30.7 (62)*</td>
</tr>
<tr>
<td>Aches, pain, analgesic, toothache, lumbago, migraine</td>
<td>15 (41)*</td>
<td>Phytochemical</td>
<td>21.8 (44)*</td>
</tr>
<tr>
<td>Respiratory infections: cough, bronchitis, expectorant, flu, tuberculosis, cold, asthma</td>
<td>10.2 (28)*</td>
<td>Cytotoxicity</td>
<td>12.4 (25)*</td>
</tr>
<tr>
<td>Anti-inflammatory, neuritis, bruises</td>
<td>7.6 (21)*</td>
<td>Antifungal</td>
<td>8.0 (16)*</td>
</tr>
<tr>
<td>Skin infections: welts herpes, sores, scabies, skin wounds, baby rash, dermatophytosis, astringent</td>
<td>7.3 (20)*</td>
<td>Anti-inflammatory</td>
<td>7.0 (14)*</td>
</tr>
<tr>
<td>Fever</td>
<td>4.1 (14)*</td>
<td>Anti protozoal</td>
<td>4.95 (10)</td>
</tr>
<tr>
<td>Colic, spasmyotic</td>
<td>4.1 (11)*</td>
<td>Analgesic</td>
<td>4.46 (9)*</td>
</tr>
<tr>
<td>Diabetes</td>
<td>3.6 (10)*</td>
<td>Antioxidant</td>
<td>4.46 (9)*</td>
</tr>
<tr>
<td>Anxiolytic</td>
<td>2.2 (6)*</td>
<td>Antimicrobial</td>
<td>3.96 (8)*</td>
</tr>
<tr>
<td>Labor</td>
<td>2.2 (6)*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number of mentions in the reviewed studies.

where the specimens were collected are Morelos (23), Estado de Mexico (20), Puebla (11), Mexico City (10), San Luis Potosi (10), Nuevo Leon (10), and Veracruz (10). Yucatan and Jalisco are less explored by one mention each one (Figure 1).

The traditional uses referred in the reviewed studies are mainly on diseases or symptoms related to the digestive system (20.73 %), followed by treatment of different types of pain (15 %), and for the treatment of diseases associated to the respiratory system (10.2 %). Other uses were anti-inflammatory (7.6 %), and skin infections (7.3 %) (Table 1, Appendix 1). From the 202 reviewed studies, 62 (30.7 %) analyzed antibacterial activity and 44 (21.8 %) were phytochemical characterizations. Other assessed activities were cytotoxicity (12.4 %) and anti-inflammatory (7 %). Some activities, such as healing, diuretic, antimalarial, aphrodisiac, immunostimulant, among others, were evaluated only once. From 101 species, 21 were evaluated for their antibacterial activity, 13 were only characterized phytochemically, and five to assess their analgesic activity. Thirty-nine were studied only once. The most studied species have been Heliopsis longipes (18 studies, Figure 2C), Ageratina pichinchensis (16, Figure 2A), Artemisia ludoviciana (13, Figure 2B), and Heterotheca inuloides (10, Figure 2D). These species were mentioned in the 28.1 % of the reviewed studies. According to their distribution, 54 species are native to Mexico, 41 are endemic, and five are introduced. The Heliantheae presented the highest proportion of native (13) and endemic (17) species, followed by Senecioneae with five native and 12 endemics (Appendix 1).

Discussion

Traditional knowledge is the best evidence of the efficacy of medicinal plants in treating diseases, their symptoms, and other ailments (Firenzuoli & Gori 2007, Helmstädtler & Staiger 2014). Ethnobotany and traditional knowledge
about the preparation and administration of medicinal plants provide valuable information around active compounds. Several phytochemical compounds with biological activities were discovered from traditional knowledge and they have been a starting point for new therapeutics (Salazar-Aranda et al. 2013, Buenz et al. 2018). From the 122 plant-derived chemical products currently used in medicine, 80% are used congruently to their ethnomedical application (Saslis-Lagoudakis et al. 2011). These compounds have played a crucial role in treating and preventing human diseases. The artemisinin drug against parasitic diseases such as malaria was isolated from Artemisia annua used in traditional medicine for the treatment of respiratory diseases (Helmstädt & Staiger 2014, Helmstädt 2017). This is a prominent example of how the traditional knowledge regarding medicinal plants plays a key role in the identification of new bioactive agents or new drugs.

Ethnopharmacology of the Asteraceae in Mexico. Heliantheae, Senecioneae, Eupatorieae, and Astereae are the tribes with the highest number of genera and species in Mexico (Villaseñor 2018) and they are well represented in the reviewed ethnopharmacological and phytochemical studies. The species of Heliantheae and Senecioneae are the most evaluated and include most of the endemic studied species. On the other hand, from 26 tribes in México only 16 are represented in ethnopharmacological studies, possibly because some of them have a few species (e.g., Arctotidaceae, Chanaactidaceae, Gochnatidaceae, Liabaeae, Onosereidaceae). But other tribes, such as Astereae and Eupatorieae are among the largest tribes in Asteraceae, with well-recognized species in Mexican traditional medicine. However, genera like Ageratina, Coniza, Erigeron, Eupatorium, Gymnosperma, Solidago, and Stevia, among others, are scarcely represented in ethnopharmacological studies.

From the best represented species in Mexican ethnopharmacological studies Ageratina pichinchensis (Figure 2A), named axihuítl or manrubio, is a plant widely used in Mexican traditional medicine, whose pharmacological activities have been confirmed in preclinical and clinical studies (Aguilar-Guadarrama et al. 2009, Sánchez-Mendoza et al. 2013, Romero-Cerecero et al. 2017). This species is used in the treatment of diseases caused by or related to fungal and skin infections, wounds, and to treat pain and gastric ulcers (Aguilar-Guadarrama et al. 2009, Sánchez-Mendoza et al. 2013, Romero-Cerecero et al. 2017). Additionally, A. pichinchensis has wound healing, antiulcer, gastroprotective, antinociceptive, and anti-inflammatory effects (Sánchez-Mendoza et al. 2010, Romero-Cerecero et al. 2012a, Romero-Cerecero et al. 2013, Sánchez-Mendoza et al. 2013). Pharmacological evaluations showed that its extracts exhibit antifungal activity against Trichophyton mentagrophytes, T. rubrum, and Candida albicans (Rios et al. 2003), and have shown therapeutic and mycological effectiveness in patients with vulvovaginal candidiasis (Romero-Cerecero et al. 2017). The antimicrobial activity of encecalin, taraxerol, β-sitosterol, and stigmasterol isolated from this species has been demonstrated (Aguilar-Guadarrama et al. 2009). The antinociceptive activity and gastroprotective effect of A. pichinchensis are related to the presence of 3,5-diprenyl-4-hydroxyacetophenone (HYDP) isolated from its leaves (Sánchez-Mendoza et al. 2013). Studies showed that 7-O-(b-D-glucopyranosyl)-galactin is the compound associated with the effects of A. pichinchensis in cell proliferation and healing activity in skin lesions in an animal model of diabetes (Romero-Cerecero et al. 2013, Romero-Cerecero 2014). The healing properties of A. pichinchensis have been assessed in human clinical trials. It has demonstrated effectiveness in the treatment of chronic venous leg ulcers (Romero-Cerecero et al. 2012a), and diabetic foot ulcers (Romero-Cerecero et al. 2015b).

Artemisia ludoviciana (Figure 2B) has been used in Mexican traditional medicine since pre-Hispanic times. It is commonly named estafiate, ajenjo del país, azumate, or iztauhyatl (Calzada et al. 2007, Estrada-Soto et al. 2012, Anaya-Eugenio et al. 2016). This species is widely used to treat gastrointestinal disorders as parasites, indigestion, diarrhea, and dysentry. Also, it is used in the treatment of colic, bronchitis, dandruff, inflammation, diabetes, antimalarial, and analgesic (Calzada et al. 2007, Estrada-Soto et al. 2012, Anaya-Eugenio et al. 2016). Studies in animal models have described antidiarrheal and antispasmodic activities of the essential oil obtained from aerial parts from A. ludoviciana (Said Fernández et al. 2005, Calzada et al. 2010, Estrada-Soto et al. 2012). Leaf extracts from this plant have antimicrobial activity against microorganisms responsible for gastrointestinal diseases such as Entamoeba histolytica, Escherichia coli, Giardia lamblia, Vibrio cholerae, and other responsible for infectious diseases as Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus (Navarro et al. 1996, Said Fernández et al. 2005, Damián-Badillo et al. 2008). Most relevant is the activity of A. ludoviciana against Helicobacter pylori, the major etiological agent of chronic gastritis and peptic ulcer disease linked to gastric carcinoma (Castillo-Juárez et al. 2009). It has been documented its anti-Mycoc-
bacterium tuberculosis activity (Jiménez-Arellanes et al. 2003). However, the compounds responsible for the mentioned antimicrobial activities have not elucidated yet. Additionally, Anaya-Eugenio et al. (2014) demonstrated the hypoglycemic and antihyperglycemic effects of arglanin and salvinine isolated from *A. ludoviciana* in mice, which supports its effectiveness in the treatment of diabetes in folk medicine.

Heliopsis longipes (Figure 2C), named chilcuague, chilcuán, petite, raíz de oro, and pyrethrum; it is endemic to the Sierra Gorda and Sierra de Álvarez in the limits of the states of Guanajuato, San Luis Potosí, and Querétaro (Cilia-López et al. 2008). This species is employed to calm toothaches, muscle aches, arthritis, rheumatism, as anti-inflammatory, in the treatment of oral herpes, oral infections, deworming, diarrhea, and muscle soreness (Cilia-López et al. 2008). It has antibacterial activity against *Escherichia coli*, as well as antifungal and anti-aflatoxigenic activity (Molina-Torres et al. 1999, Buitimea-Cantúa et al. 2020). The anti-inflammatory, antinociceptive, and anti-arithmetic activities of *H. longipes* have been demonstrated in animal models (Acosta-Madrid et al. 2009, Hernández et al.

Figure 2. Most studied Asteraceae in the Mexican ethnopharmacology. A) *Ageratina pichinchensis* (Eupatorieae), B) *Artemisia ludoviciana* (Anthemid-eae), C) *Heliopsis longipes* (Heliantheae), D) *Heterotheca inuloides* (Astereae). Images from Enciclovida. Credits: A) Neptali Ramírez Marcial, C) Arturo de Nova, D) Bodo Núñez Oberg.
It has been demonstrated that its anti-inflammatory and anti-arthritic activities are higher than the reference drug phenylbutazone. Moreover, its extracts prevent the occurrence of secondary lesions, this makes it a better alternative for this type of chronic condition (Escobedo-Martínez et al. 2017). These biological activities are attributed to affinin, the main bioactive compound present in the roots of *H. longipes* (Molina-Torres et al. 1999). Ríos et al. (2007) established that the GABAergic system is involved in the analgesic response of affinin in *H. longipes* and de la Rosa-Lugo et al. (2017) indicate that it can be used for the treatment of orofacial pain. Affinin also induces the vasodilation showing its therapeutic potential in the treatment of cardiovascular diseases (Castro-Ruiz et al. 2017). In addition, the antimutagenic activity of affinin has been demonstrated (Cariño-Cortés et al. 2010, Arriaga-Alba et al. 2013).

Heterotheca inuloides (Figure 2D) is one of the most used plants in Mexican traditional medicine with a high market demand. It is commonly named Mexican arnica,

Figure 3. Some important Asteraceae to the ethnopharmacology in Mexico. A) *Chrysactinia mexicana* (Tageteae), B) *Hofmeisteria schaffneri* (Eupatorieae), C) *Iosthephane heterophylla* (Heliantheae), D) *Parthenium hysterophorus* (Heliantheae). Images from Enciclovida. Credits: A) Arturo Cruz, B) Ignacio Vargas, C) Guillermo Ibarra, D) Aaron Balam.
Ethnopharmacology of Asteraceae in Mexico

acahual, cuauteteco, and xochiuhepal (Rodríguez-Chávez et al. 2017). This species is widely used for the treatment of inflammatory conditions, skin wounds, fever, contusions, bruises, biliary disorders, cough, respiratory problems, gastritis, hemorrhoids, rheumatism, toothache, and urinary tract inflammation (Gené et al. 1998, Delgado et al. 2001, Rodríguez-Chávez et al. 2017, Egas et al. 2018). It has antibacterial activity against Helicobacter pylori and Streptococcus mutans and its flowers are effective against Giardia intestinalis trophozoites (Rosas-Piñón et al. 2012, Rodríguez-Chávez et al. 2015c, Egas et al. 2018). Several studies have assessed the anti-inflammatory and antinociceptive activities of H. inuloides in different pharmacological models (Gené et al. 1998, Delgado et al. 2001, Maldonado-López et al. 2008, Egas et al. 2015, Rodríguez-Chávez et al. 2015a). The anti-inflammatory activity of H. inuloides has been associated to the presence of quercetin and sesquiterpenes (Delgado et al. 2001, Maldonado-López et al. 2008). The hepatoprotective and chemopreventive activities of H. inuloides are associated with the antioxidant activity of quercetin, one of the main compounds of this plant (Coballase-Urrutia et al. 2011, Ruiz-Pérez et al. 2014). The cytotoxic properties, chelating, and tyrosinase inhibitory activity of H. inuloides have been described (Rodríguez-Chávez et al. 2017). Infusions of this plant showed antioxidant activity in vitro (Coballase-Urrutia et al. 2010, Rodríguez-Chávez et al. 2015a, Rodríguez-Chávez et al. 2015c).

Traditional medicinal uses and the pharmacological activities of compounds. Many studies on Asteraceae around the world focused on chemical analysis, have nearly isolated 7,000 different compounds (Panda & Luyten 2018). Ethnopharmacological studies have been useful in the identification of phytochemical compounds since they involve the characterization and isolation of compounds with pharmacological activity. The Asteraceae family in Mexican traditional medicine is mainly used in the treatment of gastrointestinal and respiratory diseases due to its antimicrobial activity (Murillo-Álvarez et al. 2001, Canales et al. 2005, Calzada et al. 2009, Salazar-Aranda et al. 2011, Rosas-Piñón et al. 2012, Robles-Zepeda et al. 2013). The use of this family in Mexico for the treatment of diseases related to the digestive system is similar to other countries as Nepal, New Zealand, and South Africa, where several of its species are used to treat infectious diseases (Saslis-Lagoudakis et al. 2011). The frequent use of Asteraceae as antimicrobial resources in different cultures highlights the importance of the family in the entire world and reveal cultural and chemical patterns where common traditional uses are similar in plant groups to treat related conditions or diseases.

The presence of secondary metabolites in Asteraceae as polyacetylenes and flavonoids with antibacterial and bacteriostatic activities, confirm the traditional medicine use of the family in the treatment of infectious diseases (Heinrich et al. 1998, Calabria et al. 2009). In the reviewed studies, some compounds with antimicrobial activities have been identified, especially those against bacteria causing infectious diseases, such as diarrhea, pneumonia, and tuberculosis. Research related to new natural antibacterials has a crucial worldwide interest, due to bacterial resistance. Microorganisms responsible for worrying and often fatal infections such as Candida albicans, Escherichia coli, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumonia, and Trypanosoma spp. are a worldwide concern, highlighting the importance of antibiotics research to treat these diseases (OMS 2016). Natural products have been a source of bactericides in traditional medicine, and they have been served as potential therapeutics against pathogenic bacteria since the golden age of antibiotics in the mid-20th century (Rossiter et al. 2017). However, the exploration of natural products as a source for new antibiotics has been greatly reduced over the past 20 years (Silver 2015).

The main pharmacological activity in the reviewed studies is antimicrobial. The ent-trachyloban-19-oic acid, isolated from the roots of Iostephane heterophylla (Figure 3C), is a potent antibacterial agent in the treatment of oral pathogens as Streptococcus mutans (Hernández et al. 2012). Two SQLs identified in Ambrosia confertiflora, santamarine and reynosin have bactericidal activity against Mycobacterium tuberculosis (Coronado-Aceves et al. 2016). Thymol esters of different short-chain fatty acids are the active principles for antimicrobial activity of Hofmeisteria schaffneri (Figure 3B) against Bacillus subtilis, Candida albicans, and Staphylococcus aureus, three of the main microorganisms responsible for several infections (Pérez-Vásquez et al. 2011). Essential oil and 5-(3-buten-1-ynyl)-2, 2’-bithiényl of Chrysactinia mexicana (Figure 3A) have antibacterial activity against Streptococcus pneumoniae, one of the major agents of infectious diseases of the respiratory tract and resistant to penicillin (Guevara Campos et al. 2011). The encecalin and demethylenececalin isolated from Helianthella quinquenervis exhibited antifungal activity against Trichophyton mentagrophytes responsible for various skin infections (Castañeda et al. 1996). Ambrosin and incompatine B, two...
SQLs, isolated from Parthenium hysterophorus (Figure 3D) and Decacheta incompta possess high trypanocidal activity. Both compounds are more effective than the current trypanocidal drugs used clinically (Sepúlveda-Robles et al. 2019).

Other pharmacological activities evaluated in the reviewed studies were cytotoxicity, anti-inflammatory, analgesic, antioxidant, and spasmyloytic (Table 1). The hofmeisterin III and other thymyl derivatives are the main antinociceptive agents from Hofmeisteria schaffneri (Figure 3B) (Angeles-López et al. 2010). In Calea ternifolia used in the treatment of diabetes, the chromenes 1 and 2, calcins A, and C compounds were identified. These compounds reduced the postprandial hyperglycemia, one of the most common abnormalities in the early phase of type 2 diabetes (Escandón-Rivera et al. 2017). Vernonia liatroides endemic to Mexico and used in menstrual disorders and dysentery, have been identified the sesquiterpenes α-methylene γ-lacton, which has muscle relaxant activity in animal models (Campos et al. 2003). Two species have been tested against cancer cell lines, Gonzalezia cies have been tested against cancer cell lines, and the responsible compounds have not been identified. In addition, studies on medicinal plants should involve a sustainable approach based on traditional knowledge, regulation, and quality control as essential points the development of a rational use of traditional medicine and herbal remedies (Buenz et al. 2018, Mata et al. 2019).

Acknowledgments

We want to thank the anonymous reviewers and section editor who their comments helped us to improve the structure of this review.

Literature cited

Aguilar-Guadarrama B, Navarro V, León-Rivera I, Rios MY. 2009. Active compounds against tinea pedis dermatophytes from Ageratina pichinchensis var. bus-tamenta. Natural Products Research 23: 1559-1565. DOI: https://doi.org/10.1080/14786410902843301

Arzecias AR, Chacon B, Maki KA. 2004. Screening and selection of plants by positive pharmacologic effect on jejunum muscular contractility. *Pharmacological Biology* **42**: 24-29. DOI: https://doi.org/10.1080/13880200490505357

Ávila-UrIBE MM, García-Zárate SN, Sepúlveda-Barrera AS, Godínez-Rodríguez MA. 2016. Plantas medicinales en dos poblados del municipio de San Martín de las Pirámides, Estado de México. *Polibotânica* **47**: 113-135. DOI: https://doi.org/10.18387/polibotanica.47.9

Cárcenas J, Reyes-Pérez V, Hernández-Navarro MD,
Ethnopharmacology of Asteraceae in Mexico

Carro-Juárez M, Rodríguez-Landa JF, Rodríguez-Peña Casas A, Lira R, Torres I, Delgado A, Moreno-Calles AI, Carvalho Jr AR, Diniz RM, Suarez MAM, Figueiredo Carro-Juárez M, Franco MA, Rodríguez-Peña ML.

Wistar rats: Involvement of GABAA receptor. Journal of Ethnopharmacology 171: 295-306. DOI: https://doi.org/10.1016/j.jep.2015.05.005

Coballass-Urrutia E, Pedraza-Chaverri J, Camacho-Carranza R, Cádiz-Rodríguez N, Huerta-Gertrudis B, Medina-Campos ON, Mendoza-Cruz M, Delgado-

Ethnopharmacology of Asteraceae in Mexico

Fischer HN, Lee IY, Fronczek FR, Chiari G, Urbatsch LE. 1984. Three new furanone-type heliagonalides from *Calea ternifolia* and the molecular structure of 8β-angeloyloxy-9α-hydroxycalylactolide. *Journal of Natural Products* 47: 419-425. DOI: https://doi.org/10.1021/np50033a004

da en Ciencias Químico-Biológicas 18: 116-121. DOI: https://doi.org/10.1016/j.recqb.2015.09.003

Meléndez-Rodríguez M, Cerda-García-Rojas CM, Joseph-Nathan P. 2002. Quinogane, prenopsane, and patzcuarene skeletons obtained by photochemically induced molecular rearrangements of longipinene derivatives. *Journal of Natural Products* **65**: 1398-1411. DOI: https://doi.org/10.1021/np020158s

Molina-Torres J, Salazar-Cabrera CJ, Armenta-Salinas
Ethnopharmacology of Asteraceae in Mexico

Pascreiter CM, Sandoval-Ramirez J, Wright CW. 1999. Sesquiterpene lactones from *Neurolaena oaxacana*. *Journal of Natural Products* 62: 1093-1095. DOI: https://doi.org/10.1021/np990038t

Panda SK, Luyten W. 2018. Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. *Parasite* 25: 10 DOI: https://doi.org/10.1051/parasite/2018008

Ríos MY, Aguilar-Guadarrama AB, Navarro V. 2003. Two

XXI. Ratibinolide 11, a new sesquiterpenic lactone from Ratibida latipleareis. Journal of Natural Products 54: 1279-1282. DOI: https://doi.org/10.1021/np50077a006
Ethnopharmacology of Asteraceae in Mexico

terpene lactones from Asteraceae plant species. *Food and Chemical Toxicology* **125**: 55-61. DOI: https://doi.org/10.1016/j.fct.2018.12.023

Silver LL. 2015. Natural products as a source of drug leads to overcome drug resistance. *Future Microbiology* **10**: 1711-1718. DOI: https://doi.org/10.2217/fmb.15.67

Villarreal-Quintanilla JA, Estrada-Castillón AE, Encina-Dominguez JA. 2020. Dos cambios de rango taxonómico en *Pseudognaphalium* (Gnaphalieae, Asteraceae) de...
Ethnopharmacology of Asteraceae in Mexico

Villaseñor JL. 2016. Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559-902. DOI: https://doi.org/10.1016/j.rmb.2016.06.017

Associate editor: Arturo de Nova Vásquez
Author contributions: VGCL designed the research, performed the database compilation, collected the data, and conducted analyses. RCC designed the research, performed the database compilation, and conducted analyses. LRZS performed the database compilation, collected the data, and conducted analyses. All authors have made substantial intellectual contributions during the data collection, and analyses. All authors have approved the final version to be published.
Appendix 1. Ethnopharmacological studies for the Asteraceae family in Mexico from 1983 to 2020.

<table>
<thead>
<tr>
<th>Tribu</th>
<th>Species</th>
<th>Ethnomedicinal use</th>
<th>Tested activity/study</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHEMIDAE</td>
<td>Artemisia absinthium L. (INT)</td>
<td>Stomach-ache, labor, colic, bile, diarrhea</td>
<td>Antibacterial, antiprotozoal</td>
<td>Hernández et al. (2003), Canales et al. (2005), Calzada et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>antispasmodic, malfunction of the gall bladder, pain, diabetes, colds, bronchitis,</td>
<td>antibacterial, muscle relaxant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>throat, head sores</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tanacetum parthenium (L.) Sch. Bip. (INT)</td>
<td>Convulsions, susto (fear), migraine, epilepsy, sedative, migraine, headache, rheumatoïd arthritis, stomachache, toothache, analgesic, anti-inflammatory, antispasmodic</td>
<td>Antibacterial, anxiolytic, antidepressant</td>
<td>Hernández et al. (2003), Cárdenas et al. (2017)</td>
</tr>
<tr>
<td>ANTHEMIDAE</td>
<td>Baccharis conferta Kunth (NAT)</td>
<td>Cold, vomit, sickness</td>
<td>Antibacterial, anti-helmintic</td>
<td>Rocha-Gracia et al. (2011), Cortes-Moraes et al. (2019)</td>
</tr>
<tr>
<td></td>
<td>Baccharis heterophylla Kunth (NAT)</td>
<td>Fever, wound healing</td>
<td>Muscle relaxant, spasmyotic</td>
<td>Rojas et al. (1999), Rojas et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>(Baccharis salicina Torr. & A.Gray)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ethnopharmacology of Asteraceae in Mexico

<table>
<thead>
<tr>
<th>Tribu</th>
<th>Species</th>
<th>Ethnomedicinal use</th>
<th>Tested activity/study</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARDUEAE</td>
<td>Centaurea melitensis L. (INT)</td>
<td>Liver damage</td>
<td>Antirumoral</td>
<td>Torres-González et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>(Centaurea americana Nutt.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COREOPSISIDAE</td>
<td>Cirsium mexicanum DC (NAT)</td>
<td>Cancer, diabetes</td>
<td>Antimicrobial</td>
<td>Rosas-Piñón et al. (2012), Knauth et al. (2018)</td>
</tr>
<tr>
<td></td>
<td>Cosmos pringlei B.L. Rob. & Fernald (END)</td>
<td>Stomachaches, toothaches, headaches, dysentery, improving circulation</td>
<td>Phytochemical characterization</td>
<td>Mata et al. (2002)</td>
</tr>
<tr>
<td>Tribu</td>
<td>Species</td>
<td>Ethnomedicinal use</td>
<td>Tested activity/study</td>
<td>Studies</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Brickellia</td>
<td>cavanillesii (Cass.) A. Gray (END)</td>
<td>Diabetes, stomachache, liver disease, diarrhea, cardiovascular diseases, treatment of ulcers, dyspepsia, analgesic, tapeworm, indigestion, colic, hypertension, anxiety</td>
<td>Vasorelaxing, anxiolytic, hypoglycemic</td>
<td>Aguirre-Crespo et al. (2005), Escandón-Rivera et al. (2012), Ávila-Villarreal et al. (2016)</td>
</tr>
<tr>
<td>Brickellia</td>
<td>veronicifolia (Kunth) A. Gray (NAT)</td>
<td>Diabetes, gastroenteritis, diarrhea, pain, stomachache, biliary colic, dyspepsia, arthritis, topic inflammations, infectious diseases, gastritis</td>
<td>Hypoglycemic, antibacterial, analgesic, phytochemical characterization, anti-mutagenic toxicity, spasmytic, antioxidant</td>
<td>Pérez-Gutiérrez et al. (1998), Pérez et al. (2000), Hernández et al. (2003), Pérez et al. (2004), Rivero-Cruz et al. (2006), Calzada et al. (2007), Palacios-Espinosa et al. (2008)</td>
</tr>
<tr>
<td>Decachaeta</td>
<td>incompta DC (NAT)</td>
<td>Diabetes, dysentery</td>
<td>Antibacterial, antiprotozoal, trypanocidal</td>
<td>Calzada et al. (2009), Bautista et al. (2012), Velázquez-Domínguez et al. (2013), Sepúlveda-Robles et al. (2019)</td>
</tr>
<tr>
<td>Hofmeisteria</td>
<td>schaffneri (A. Gray) R.M. King & H. Rob (END)</td>
<td>Skin wounds, fevers, gastrointestinal ailments, stomach aches, dyspepsia, bleeding diarrhea, topic antiseptic agent</td>
<td>Toxicity, analgesic, antifungal, antumoral, phytochemical characterization, spasmytic</td>
<td>Pérez-Vásquez et al. (2005), Pérez-Vásquez et al. (2008), Angeles-López et al. (2010), Pérez-Vásquez et al. (2011), Pérez-Vásquez et al. (2017)</td>
</tr>
<tr>
<td>Piqueria</td>
<td>trinervia Cav. (NAT)</td>
<td>Typhus, fever, malaria, tetanus, diarrhea, antipyretic, abdominal pain</td>
<td>Antifungal, antibacterial, antiprotozoal, molluscicidal</td>
<td>Cruz-Reyes et al. (1989), Saad et al. (2000), Ruiz de Esparza et al. (2007), Rufino-González et al. (2017)</td>
</tr>
<tr>
<td>Stevia</td>
<td>salicifolia Cav. (NAT)</td>
<td>Gastrointestinal disorders</td>
<td>Phytochemical characterization</td>
<td>Mata et al. (1992), Meléndez-Rodríguez et al. (2002)</td>
</tr>
<tr>
<td>GNAPHALIEAE</td>
<td>Anaphalis margaritacea (L.)</td>
<td>Cough, respiratory problems, cold, rheumatism.</td>
<td>Antibacterial, cytotoxicity</td>
<td>Murillo-Álvarez et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Benth. & Hook f. (NAT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gamochaeta americata (Mill.) (NAT)</td>
<td>Cough, cold, bronchitis, angina ache</td>
<td>Antibacterial</td>
<td>Rojas et al. (2001)</td>
</tr>
<tr>
<td>(Gamaphallium americanum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purpureum L. (NAT)</td>
<td></td>
<td>Antibacterial, cytotoxicity</td>
<td>Murillo-Álvarez et al. (2001)</td>
</tr>
<tr>
<td>(Gamachaeta purpurea (L.) Cabrera)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attenuatum (NAT)</td>
<td>Respiratory illnesses</td>
<td>Antibacterial</td>
<td>Enciso-Díaz et al. (2012)</td>
</tr>
<tr>
<td>(Pseudognaphallium attenuatum (DC.) Anderb.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudognaphallium</td>
<td>conoideum (Kunth) Anderb. (END)</td>
<td>Stomach diseases, swellings, wounds, prostatism, lumbago, neuritis, angina ache, blood pressure, diuretic, antipyretic, malarial</td>
<td>Spasmylic</td>
<td>Campos-Bedolla et al. (2005)</td>
</tr>
<tr>
<td>(Gnaphallium conoideum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ethnopharmacology of Asteraceae in Mexico

<table>
<thead>
<tr>
<th>Tribu</th>
<th>Species</th>
<th>Ethnomedicinal use</th>
<th>Tested activity/study</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudognaphalium monticola (McVaugh) Villarreal, A.E. Estrada & Encina, stat. nov. (NAT)</td>
<td>Respiratory diseases such as flu, fever, asthma, cough, cold, bronchitis, expectorating, and bronchial affections</td>
<td>Antibacterial, phytochemical characterization, muscle relaxant</td>
<td>Villagómez-Ibarra et al. (2001), Sánchez-Mendoza et al. (2007), Rodríguez-Ramos & Navarrete (2009)</td>
<td></td>
</tr>
<tr>
<td>Pseudognaphalium viscosum (Kunth) Anderb. (NAT)</td>
<td>Flu, fever, asthma, bronchitis, cough</td>
<td>Antibacterial</td>
<td>Villagómez-Ibarra et al. (2001)</td>
<td></td>
</tr>
</tbody>
</table>

HELENIEAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Ethnomedicinal use</th>
<th>Tested activity/study</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helenium mexicanum Kunth (NAT)</td>
<td>Antiseptic, acaricide, sterminative</td>
<td>Antibacterial</td>
<td>Barrera-Figueroa et al. (2011)</td>
</tr>
</tbody>
</table>

HELIANTHEAE

<table>
<thead>
<tr>
<th>Species</th>
<th>Ethnomedicinal use</th>
<th>Tested activity/study</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrosia ambrosioides (Cav.) W.W. Payne (NAT)</td>
<td>Wounds, sores, placental expulsion, menstrual symptoms, hair diseases</td>
<td>Antibacterial</td>
<td>Robles-Zepeda et al. (2013)</td>
</tr>
<tr>
<td>Ambrosia confertiflora DC. (NAT)</td>
<td>Intestinal parasites, stomachache, fever, lack of appetite, menstrual symptoms</td>
<td>Antibacterial, larvicidal, cytotoxic</td>
<td>de la Torre Rodríguez et al. (2013), Robles-Zepeda et al. (2013), Coronado-Aceves et al. (2016)</td>
</tr>
<tr>
<td>Ambrosia psilostachya DC. (NAT)</td>
<td></td>
<td>Antibacterial, cytotoxicity</td>
<td>Murillo-Álvarez et al. (2001)</td>
</tr>
<tr>
<td>Dendroligulera quinqueradiata (Cav.) E.E. Schill. & Panero (END)</td>
<td></td>
<td>Cytotoxicity, antibacterial, phytochemical characterization</td>
<td>Villarreal et al. (1994)</td>
</tr>
<tr>
<td>Encelia laciniata Vasey & Rose (END)</td>
<td></td>
<td>Antibacterial, insecticide</td>
<td>Proksch et al. (1983)</td>
</tr>
<tr>
<td>Tribu</td>
<td>Species</td>
<td>Ethnomedicinal use</td>
<td>Tested activity/study</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Encelia palmeri Vasey & Rose (END)</td>
<td></td>
<td>Antibacterial, insecticide</td>
</tr>
<tr>
<td></td>
<td>Encelia ventorum Brandegee (END)</td>
<td></td>
<td>Antibacterial, insecticide</td>
</tr>
<tr>
<td></td>
<td>Flaveria trinervia (Spreng.) C. Mohr (NAT)</td>
<td>Diarrhea, dysentery</td>
<td>Antiprotozoal, antibacterial</td>
</tr>
<tr>
<td></td>
<td>Flourensia cernua DC. (NAT)</td>
<td>Indigestion, expectorant, respiratory infections, tuberculosis</td>
<td>Antibacterial</td>
</tr>
<tr>
<td></td>
<td>Gonzalezia decurrens (A. Gray) E.E. Schill. & Panero (END)</td>
<td>Infections, wounds, boils, and to alleviate gastric ulcers</td>
<td>Phytochemical characterization, cytotoxicity, insecticide</td>
</tr>
<tr>
<td></td>
<td>(Viguiera decurrens A. Gray)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gonzalezia hypargyrea (Greenm.) E.E. Schill. & Panero (END)</td>
<td>Gastrointestinal disorders</td>
<td>Cytotoxicity, anti-spasmodic, antibacterial, phytochemical characterization</td>
</tr>
<tr>
<td></td>
<td>(Viguiera hypargyrea Greenm.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helianthella quinquenervis (Hook.) A. Gray (NAT)</td>
<td>Deworming, gastrointestinal ailments, ulcers</td>
<td>Antibacterial, cytotoxicity, antifungal, antiprotozoal</td>
</tr>
<tr>
<td></td>
<td>Iostephane heterophylla (Cav.) Hemsl. (END)</td>
<td>Arthritis, rheumatism, pain, diabetes, gastrointestinal ailments, dysentery, skin problems</td>
<td>Phytochemical characterization, antibacterial</td>
</tr>
<tr>
<td></td>
<td>Montanoa grandiiflora Alamán ex DC. (END)</td>
<td>Aphrodisiac, anxiolytic, labor</td>
<td>Anxiolytic, ejaculatory</td>
</tr>
</tbody>
</table>
Ethnopharmacology of Asteraceae in Mexico

<table>
<thead>
<tr>
<th>Tribu</th>
<th>Species</th>
<th>Ethnomedicinal use</th>
<th>Tested activity/study</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>INULEAE</td>
<td>Epaltes mexicana Cess. (NAT)</td>
<td>Antimicrobial</td>
<td>Antibacterial, trypanocidal, antibacterial, phytochemical characterization</td>
<td>Kato et al. (1996)</td>
</tr>
<tr>
<td>MILLERIEAE</td>
<td>Smallanthus mexicanus (Cav.)</td>
<td>Gastrointestinal disorders</td>
<td>Antibacterial, cytotoxicity, antimicrobial, phytochemical characterization</td>
<td>Ríos & León (2006), Jacobo-Herrera et al. 2016</td>
</tr>
<tr>
<td>NAASUVIEAE</td>
<td>Acourtia cordata C.S. B. L. Turner (END)</td>
<td>Pain, rheumatism, renal, hepatic, gastrointestinal ailments, diabetes</td>
<td>Antibacterial</td>
<td>Roja-Gracia et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>(Perezia hebeclada (DC.) A. Gray)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acourtia humboldtii Less. B.L. Turner (END)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table lists various species of the Asteraceae family, their ethnomedicinal uses, and the tested activities and studies associated with them. Each entry is accompanied by the corresponding studies that confirm these activities.

For example, Montanoa tomentosa, a species under the INULEAE tribe, is used for its aphrodisiac, anxiolytic, and labor properties, and its tested activity/study includes phytochemical characterization. The studies associated with this species include Gallegos (1983), Southam et al. (1983), Carro-Juárez et al. (2004), Salazar-Dupont (2015), Carro-Juárez et al. (2014), Estrada-Camarena et al. (2019).
<table>
<thead>
<tr>
<th>Tribe</th>
<th>Species</th>
<th>Ethnomedicinal use</th>
<th>Tested activity/study</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUROLAENEAE</td>
<td>Trixis silvatica B.L. Rob. & Greenm. (END)</td>
<td>Cathartic, muscle pain, stomach illness</td>
<td>Antibacterial</td>
<td>Rocha-Gracia et al. (2011)</td>
</tr>
<tr>
<td>SENECEOIDEAE</td>
<td>Calea ternifolia Kunth (NAT)</td>
<td>Treating colic, fever, cough, diabetes</td>
<td>Phytochemical characterization, hypoglycemic</td>
<td>Fischer et al. (1984), Escandón-Rivera et al. (2017)</td>
</tr>
<tr>
<td>SENECEOIDEAE</td>
<td>Barkleyanthus salicifolius (Kunth) H. Rob. & Brettell (NAT)</td>
<td>Anti-inflammatory, migraine, liver and kidney disease</td>
<td>Antioxidant</td>
<td>Domínguez et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Pittocaulon velatum (Greenm.) H. Rob. & Brettell (NAT)</td>
<td>Anti-inflammatory</td>
<td>Antioxidant, anti-inflammatory, antifungal, antibacterial</td>
<td>Marín-Loaiza et al. (2008), Marín-Loaiza (2013)</td>
</tr>
<tr>
<td></td>
<td>Psacaliopsis purpusii (Greenm.) H. Rob. & Brettell (END)</td>
<td>Antibacterial</td>
<td></td>
<td>Rocha-Gracia et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Psacalium peltatum (Kunth) Cass. (END)</td>
<td>Immunomodulatory agent, cancer</td>
<td>Anti-inflammatory, antioxidant, hypoglycemic, immunostimulant, cytotoxicity,</td>
<td>Alarcón-Aguilar et al. (2010), Izquierdo-Vázquez et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>(Psacalium palladium, (H.B.K.) Cass.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psacalium radulifolium (Kunth) H. Rob. & Brettell (END)</td>
<td>Phytochemical characterization</td>
<td></td>
<td>Garduño-Ramírez et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Robinioecio gerberifolius (Sch. Bip.) T.M. Barkley & J.P. Janovec (NAT)</td>
<td>Phytochemical characterization</td>
<td></td>
<td>Arciniegas et al. (2003), Arciniegas et al. (2006b)</td>
</tr>
<tr>
<td></td>
<td>(Senecio angulifolius DC., Senecio salignus DC.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Senecio cardiophyllus Hemsl, Senecio sessilifolius (H. et A.) Hemsley)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribu</td>
<td>Species</td>
<td>Ethnomedicinal use</td>
<td>Tested activity/study</td>
<td>Studies</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(Dyssodia appendiculata Lag.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysactinia mexicana A.</td>
<td>Gray (NAT)</td>
<td>Antiprotozoal, antibacterial,</td>
<td>Céspedes et al. (2006), Damian et al. (2008),</td>
<td></td>
</tr>
<tr>
<td>Gympnolaena oaxacana</td>
<td>(Greenm.) Rydb (END)</td>
<td>phytochemical characterization, anti-spasmodic, antidepressant, toxicity</td>
<td>Guadarrama-Cruz et al. (2008), Guadarrama-Cruz,</td>
<td></td>
</tr>
<tr>
<td>Porophyllum linaria (Cav.)</td>
<td>DC (END)</td>
<td>Anti-inflammatory.</td>
<td>Hernández-Cruz et al. (2019)</td>
<td></td>
</tr>
<tr>
<td>Vernonanthura patens</td>
<td>(Kunth) H. Rob. (NAT)</td>
<td>Cytotoxicity, antitumoral</td>
<td>Avelino-Flores et al. (2019)</td>
<td>Avelino-Flores et al. (2019)</td>
</tr>
<tr>
<td>(Vernonia patens Kunth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>