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Abstract

Background: Heterostyly is a genetic polymorphism in which flowers differ between individual plants of a species in heights at which
stamens and style are reciprocally positioned. In these species, sexual selection theory predicts that different allocation patterns affect the
functioning of polymorphism, enabling the evolutionary transition between heterostyly and dioecy.

Questions: Because heterostyly can transit into dioecy, does anther/pollen development differ between floral morphs (LS and SS) of
P. padifolia? 1s pollen/anther development malfunction associated with one morph more than the other?

Study species: Palicourea padifolia (Rubiaceae), a distylous plant.

Methods: Tiny floral buds to flowers at anthesis were collected, processed for microphotography, and examined to describe pollen
developmental pathways in LS and SS flowers. In addition, we used the TUNEL test to detect programmed cell death.

Results: Stages of normal pollen development are fully described and illustrated in LS and SS flowers. Abnormalities due to tapetal
degeneration were observed at various developmental stages; at later stages, SS flowers showed more abnormalities than LS flowers. The
TUNEL test showed that degeneration was by programmed cell death.

Conclusions: Along with previous results of asymmetrical fecundity and pollen transfer of morphs in P. padifolia, our study of pollen
development indicates that the SS morph was more prone to lose the male function, though male sterility is far from being complete, which it
might be an initial step towards functional dioecy.
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Resumen

Antecedentes: Heteroestilia es un polimorfismo floral donde las flores se diferencian reciprocamente entre plantas de una especie en la
posicion de estambres y estilo. En estas especies, la teoria de seleccion sexual predice que patrones de asignacion diferente afectan el
funcionamiento del polimorfismo, permitiendo la transicion evolutiva entre heteroestilia y dioecia.

Preguntas: Debido a que la heteroestilia puede transitar hacia la dioecia, ;Difieren los morfos florales (LS y SS) de P. padifolia en el
desarrollo de anteras y polen? ;Las fallas del desarrollo de polen y anteras estan asociadas con uno de los morfos mas que con el otro?
Especie de estudio: Palicourea padifolia (Rubiaceae), una planta diestilica.

Métodos: Colectamos desde botones florales pequefios a flores en antesis, procesamos para microfotografia, y examinamos para describir el
desarrollo del polen en flores LS y SS. Ademas, usamos la prueba de TUNEL para detectar muerte celular programada.

Resultados: Se ilustra y describe el desarrollo normal del polen en flores LS y SS. Observamos anormalidades por degeneracion tapetal en
varias etapas, pero en los mas tardias hubo mas anormalidades en SS que LS. La prueba de TUNEL mostré que la degeneracion fue por
muerte celular programada.

Conclusiones: En concordancia con resultados previos de fecundidad y transferencia de polen asimétrica entre morfos de P. padifolia, nuestro
estudio de desarrollo de polen indica que el morfo SS esta perdiendo la funcién masculina, aunque la esterilidad masculina dista de ser total,
lo que podria ser el primer paso hacia la dioecia funcional.

Palabras clave: Desarrollo de polen, esterilidad masculina, heteroestilia, Palicourea, Rubiaceae, tapetum.
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Pollen development in Palicourea padifolia

Heterostyly is a genetically controlled floral polymorphism
characterized by the presence within populations of two
(distyly) or three (tristyly) morphs that differ reciprocally in
the position of the stigmas and anthers, functioning to
promote cross-pollination (Barrett 2002, Ferrero 2014). The
heterostylous syndrome often consists of three associated
sets of traits enforcing disassortative mating between floral
morphs: reciprocal herkogamy, self- and intramorph
incompatibility, and an array of ancillary floral
polymorphisms such as pollen grain size and number,
stigmatic surface and shape, anther color, corolla length and
the timing and amount of nectar reward (Ganders 1979,
Barrett 1990, 1992, Lloyd & Webb 1992a, Dulberger &
Ornduff 2000, Ornelas et al. 2004a, b). Although hundreds
of studies on the morphology and function of heterostyly
had been published (see reviews Barrett & Shore 2008
Weller 2009, Cohen 2010, Barrett 2019), most studies have
documented morph-specific differences of the mature
flowers (reviewed in Dulberger 1992, Barrett 2019),
developmental pathways through the ontogeny of floral
buds (e.g., Faivre 2000, Hernindez & Ornelas 2007b,
Cohen 2010), and in a number of pollen characters, such as
size, number, shape and starch content (e.g., Dulberger

Nepokroeff et al. 1999, Andersson & Rova 1999, Bremer &
Eriksson 2009). Studies of development of pollen are
surprisingly scarce for a large family such as Rubiaceae.
Microscope images of mature pollen stage have been
published for several genera mainly in systematic studies
(e.g., Dessein et al. 2005) and three studies have
comprehensively studied pollen development of Rubiaceae
species (Hansson & El-Ghazaly 2000, El-Ghazaly et al.
2001, Li et al. 2010). However, studies of pollen
development from early stages of flower development on
distylous species are lacking.

Palicourea padifolia (Roem. and Schult.) C. M. Taylor
and Lorence deviates from perfect reciprocity as originally
described for heterostylous species. Anthers of the long-
styled flowers (hereafter LS morph) are positioned well
above the stigma heights in the short-styled flowers
(hereafter SS morph), whereas stigma-anther separation in
the LS morph is less pronounced in comparison with the SS
morph in most studied populations (Herndndez & Ornelas
2007a). This results in a lower reciprocity between lower-
level sex organs and a difference in the degree of
herkogamy between the floral morphs (Herndndez &
Ornelas 2003), which promotes more effective pollen

1975, 1992, Ganders 1979, Scribailo & Barrett 1991 a, b,
Weller 2009). However, to our knowledge, only two
published  investigations  have  examined  early
developmental differences between or among floral morphs
of heterostylous species (Dominguez et al. 1997, Bull-
Herefiu et al. 2016).

Heterostyly has arisen independently in 28 angiosperm
families (199 genera), presumably as an adaptation to
similar selective pressures (Arroyo & Barrett 2000, Barrett
et al. 2000, Barrett 2002, Naiki 2012). In Rubiaceae, there
are more species with dimorphic heterostyly than in any
other family of flowering plants (Darwin 1877, Vuilleumier
1967, Weller 2009, Ferrero et al. 2012), perhaps more than
in all other families of flowering plants put together
(c. 734 species in 109 genera; Anderson 1973, Naiki 2012).
In Palicourea Aubl. (c. 200 species, Rubiaceae), most
species are distylous (Vuilleumier 1967, Sobrevila et al.
1983, Taylor 1989), and most other genera in the tribe
Psychotrieae are predominantly distylous, including
Psychotria Subg. Heteropsychotria Steyerm., the closest
relative of Palicourea, showing substantial variation in the
expression of the polymorphism among species (Bawa &
Opler 1975, Taylor 1993, S4 et al. 2016). Distyly seems to
be the ancestral condition for Palicourea, but that has been
replaced by self-fertile homostylous species on islands or
isolated populations (Taylor 1993, 1997, Sobrevila et al.
1983, Consolaro et al. 2009). However, more recent
molecular work and taxonomic treatments acknowledge the
homoplasious nature of the floral characters used to define
Palicourea (Bremer et al. 1995, Taylor 1996, 1997

between SS anthers and LS stigma than in the opposite
direction (Ornelas et al. 2004a). In addition, morph
differences in ancillary floral traits and resource allocation
to reproduction have been documented in P. padifolia.
Flowers of SS individuals have significantly longer
corollas, larger stigmatic surfaces, and fewer pollen grains
than those of LS individuals. By contrast, LS flowers
secrete more nectar, develop more pollen grains, and
produce more floral buds per inflorescence than SS flowers
(Contreras & Ornelas 1999, Ornelas et al. 2004a, b,
Gonzélez et al. 2005). SS individuals produce almost twice
as many fruits as LS individuals after outcross hand-
pollinations (Contreras & Ornelas 1999, Ornelas et al.
2004a, b). However, morph differences in fruit production
vary among years under natural conditions (Gonzélez et al.
2005). Furthermore, the disproportionate allocation to
gynoecium with increasing corolla mass in SS morphs
(Hernandez & Ornelas 2007b) supports the idea that morph
differences in allocation are not a mere result of
developmental or architectural constraints. Pollen
performance and/or developmental differences in resource
allocation to male and female function between morphs
might account for these differences (e.g., Bull-Herefiu ef al.
2016). There are also morph differences in pollen viability;
the proportion of pollen grains that deeply stained for starch
among LS flowers was twice as high as the proportion
among SS flowers (A. Herndndez, J. F. Ornelas, F. Ortega-
Escalona & G. Angeles, unpublished data). It is possible
that the higher content of starch in LS pollen play a role in
terms of more resources for reaching the ovules through
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shorter SS pistils. If so, longer styles would intensify
interference by allowing small differences in pollen tube
growth rate to be expressed. Thus, the documented
dissimilarities between morphs in P. padifolia should lead
to differences in their abilities to gain reproductive success
through female versus male function. Because P. padifolia
is morphologically distylous with complete intra-morph
incompatibility, the vector-mediated asymmetrical pollen
transfer between morphs, which is not consistent with
Darwin’s hypothesis of disassortative pollination, and
allocation differences between floral morphs are likely the
conditions for gender specialization in distylous species and
less likely selfing avoidance because intra-morph-
incompatibility would greatly avoid self-fertilization (see
also Zhou et al. 2015, Jiang et al. 2018).

Since Darwin (1877), heterostylous species have been
portrayed as the best-documented cases to study transitions
of heterostyly to dioecy (Wyatt 1983). Sexual selection
theory predicts different allocation patterns in distylous
flowers (reviewed in Casper 1992), in which gender
specialization favors maleness in the floral morph with the
higher pollen donation efficiency (typically the SS flowers),
and femaleness in the opposite receiving more pollen (LS
flowers). Pollinator-driven asymmetrical pollen transfer
between the floral morphs might create the initial ecological
conditions for the transition to dioecy from distyly (Darwin
1877). An asymmetrical reproductive success between
floral morphs may be produced by morph-biased shortage
of pollen, asymmetrical pollinator service, and/or high
proportion of sterile pollen produced by LS or SS
individuals (male sterility). The higher pollen production by
LS flowers, its successful delivery on stigmas of SS flowers
by hummingbirds, and higher deposition of illegitimate
pollen on their stigmas (Ornelas et al. 2004a, Herndndez &
Ornelas 2007a), favor the male function in LS morph and
might represent an initial early step of gender specialization
in P. padifolia in a transition from heterostyly to the
evolution of separate sexes. Here, our study addresses the
hypothesis that heterostyly in P. padifolia can be an
intermediate stage in the origin of dioecy, exploring the idea
that an initial step could occur if pollen/anther development
malfunction becomes associated with one morph more than
the other. Specifically, we used light microscopy and
scanning electron microscopy to assess whether one of the
floral morphs of P. padifolia is more prone to lose the male
function through developmental stages of anthers and pollen
grains. We hypothesize that pollen development in
Palicourea padifolia deviates from the normal ontogenetic
stages observed in other Rubiaceae, in which floral morphs
would differ in manifestations of the male function.
According to our previous particular results of fecundity
and pollen transfer of morphs in P. padifolia favoring
maleness in the LS morph and femaleness in the SS morph,
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we expect that SS flowers would be more prone to lose the
male function (male sterility) because the female function in
this morph is bigger. Thus, the transition to dioecy in this
species would be with the SS morph acting as female
function and the LS morph as male function.

Material and methods

Species. Palicourea padifolia, a long-lived, 2-7 m tall
understory shrub, is morphologically distylous with
complete intra-morph incompatibility (Ree 1997, Contreras
& Ornelas 1999). It occurs in middle-elevation cloud forests
from eastern Mexico to Panama (Taylor 1989, Gutiérrez-
Rodriguez et al. 2011). One-day yellow flowers have
epipetalous, tubular corollas in which stamens are attached
to the internal surface of the corolla tube and are visible up
to the internal ring of trichomes that encloses the nectar
chamber (Contreras & Ornelas 1999). Pollination is
primarily by hummingbirds; they transfer pollen more
effectively from LS to SS flowers than in the opposite
direction (Ornelas et al. 2004a), leading to asymmetrical
pollen flow in most studied populations (Hernandez &
Ornelas 2007a).

Plant material. Plants used in this study were sampled from
a population in a cloud forest remnant, at the Parque
Ecolégico Francisco Xavier Clavijero near Xalapa,
Veracruz, Mexico (19° 30" N, 96° 57" W; at 1,225 m above
sea level). In this population (> 500 reproductive
individuals), the LS and SS morphs are equally present
(Hernandez & Ornelas 2007a). Field observations indicate
that floral buds take 30-70 days to develop from < 6 mm to
anthesis (Hernandez & Ornelas 2007a). After initiation,
buds develop to a point at which growth is arrested; at this
stage they are consistently about 20 % of their final size to
anthesis. Buds remain at this arrested stage for about
25 days. Once buds begin to grow again, a 15-d period of
rapid growth begins and then buds open within a predictable
range of days (Herniandez & Ornelas 2007a). A positive
relationship between bud length and number of pollen
grains per anther, and significantly different between floral
morphs, was observed by Herndndez & Ornelas (2007a),
but morph differences in pollen number were not detected at
smaller floral buds. Therefore, the early stages of pollen
development and hence the most significant developmental
events, proceed very rapidly (J. Marquez-Guzman, pers.
comm.). Descriptions of pollen developmental stages were
made on samples collected from LS and SS plants in May
of 2006, 2007, 2008 and 2009 (> 100 plants and
> 600 buds). Samples were collected from different plants
each year because plants do not flower each year (Gonzalez
et al. 2005). Although material was collected in different
years for preliminary work, the same general pattern was
observed in different years.




Pollen development in Palicourea padifolia

For both floral morphs, fresh floral buds at different
developmental stages of P. padifolia, from very tiny floral
buds (< 3 mm) to fully developed floral buds (14-16 mm),
were collected from living plants at the Parque Ecologico
Francisco Xavier Clavijero for light microscopy (LM) and
scanning electron microscopy (SEM). The fresh buds were
immediately fixed in FAA (10 % formaldehyde, 5 % glacial
acetic acid, 50 % ethanol, and 35 % distilled water) in the
field. In addition to buds, flowers at anthesis were collected
from both floral morphs and fixed as described until use in
microscopy analysis. When back in the laboratory, floral
buds of each morph were measured with a caliper (precision
0.1) and sorted into seven size classes based on bud length
(< 3.0, 3.1-5.0, 5.1-7.0, 7.1-9.0, 9.1-11, 11.1-13.0,
> 13.1 mm). This classification was made to guide the
finding of developmental stages in the androecium,
proceeding very rapidly toward the free microspore stage
during the first two size classes. Then, the seven size classes
were associated with five developmental stages confirmed
by microscopic examination (< 3.0-mm buds: sporogenous
tissue stage, microspore mother cell stage, tetrad stage;
3-4 mm buds: free microspore stage; > 5 mm buds: mature
pollen stage).

Microscopy. For LM and SEM, the anthers were dehydrated
in a graded ethanol series (30, 50, 70, 85, 96 and 100 %)
and stored in 70 % ethanol. For the histological analysis the
dehydrated anthers were gradually infiltrated and embedded
in LR-W (London resin white) by mixing absolute alcohol
and LR-W (3:1, 2:2, 1:3), each change kept at 4 °C for 1 h
and a change to LR-W at 4 °C for 12 h. The embedded
specimens were transferred to gelatin capsules and kept at
56 °C for 12 h. For observing pollen development,
embedded specimens were sectioned with a RMC MT-990
(Boeckeler Instruments Inc., Tucson, Arizona, USA)
motorized precision microtome at 1.5-2 pm. Longitudinal
and cross-sections were stained with 1 % toluidine blue O
and imaged with an Olympus Provis AX-70 Evolution MP
6MPX  (Olympus America Inc., Center Valley,
Pennsylvania, USA) microscope.

For SEM, anthers of buds and flowers at anthesis
(15 randomly-chosen samples per floral morph) were
further dehydrated in absolute ethyl alcohol and critical-
point dried with CO,, glued with silver paste to SEM stubs,
coated with a layer of gold (JEOL fc-1100 ionizer), and
imaged with a JEOL JSM-6360LV (Peabody,
Massachusetts, USA) scanning electron microscope at
80 kV.

Lastly, several anthers from flowers at anthesis were
squashed and pollen was acetolyzed according to Erdtman
(1966) and imaged with an Olympus Provis AX-70
microscope.

Out of the plants sampled in 2008 (n = 27, 14 LS and
13 SS), we randomly chose 5 floral buds per developmental
stage from each plant (n = 25 per plant; 350 LS floral buds,
325 SS floral buds) to determine the relative frequency of
abnormalities in each morph. We used a Chi-square test to
investigate morph differences in abnormalities. Samples
were scored as abnormal only when other described
abnormalities besides tapetal degeneration were observed in
a given developmental stage.

TUNEL assay. To detect the mechanism for degeneration
during anther development in P. padifolia SS flowers, we
used the TUNEL assay (TUNEL, AP, ROCHE Mannheim,
Germany; Cat. no. 1684 809), which is a hallmark of
programmed cell death (PCD), following Gavrieli et al.
(1992), Coimbra et al. (2004), Flores-Renteria et al. (2013)
and Mérquez-Guzman et al. (2016). Sections were viewed
using an Olympus FV1000 confocal microscope (Olympus
Optical, Tokyo, Japan).

Results

Normal  development. Normal anther and pollen
development are fully described and illustrated in LS and
SS flowers. Although the development of the pollen is a
continuous process, results are presented next for five key
ontogenetic stages, from sporogenous tissue to microspore
mother cell (MMC), tetrad, free microspore, and mature
pollen stages. Abnormalities are described following the
description of normal anther and pollen development.

Sporogenous  tissue stage. Palicourea padifolia has
tetrasporangiate anthers (Figure 1A), with raphides
distributed in the connective tissue. The differentiation of
the sporogenous tissue initiates in buds < 3 mm in length.
At the time the sporogenous tissue is differentiating, the
tissue forming the anther wall is divided periclinally and
anticlinally (Figure 1B). The anther wall typically consists
of epidermis, endothecium, one or two middle layers and
tapetum. The tapetum is one layered and tapetal cells are
uninucleate. Pollen grains are dispersed at the tricellular
stage.

Microspore mother cell stage (MMC). Microspore mother
cells (MMCs) are found in buds < 3 mm long. Sporogenous
tissue differentiates into MMCs, which are large and contain
a sizable nucleus. In this stage five layers are differentiated
in the anther wall: epidermis, endothecium, two middle
layers and the tapetum (Figure 1C). Large vacuoles are
present in tapetal cells. As development proceeds, the
callose layer is getting thicker until dyad formation

(Figure 1D).
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Tetrad stage. Tetrads are found in buds < 3 mm long. Once
the MMCs are surrounded by callose, meiosis I occurs
(Figure 1E) and the meiosis II division occurs immediately
after forming tetragonal tetrads of microspores, which are
still surrounded by the callose layer. In this developmental
stage, the tapetal cells grow radially and contain large
vacuoles occupying most of the cellular space and
displacing the cytoplasm and nucleus to the periphery

(Figure 1F).

Free microspore stage. Free microspores are found
predominantly in buds between 3 and 7 mm long, with the
majority of these buds ranging between 3 and 4 mm long.

T AT e

At the end of the tetrad stage, the callose layer disassociates,
and the microspores become separated from one another,
initiating the free microspore stage. In the locule some
microspores are spherical, all presenting cytoplasmic
content (Figure 2A). At this time of development, three
layers, from the outside to the inside, constitute the anther
wall: epidermis, endothecium and tapetum. The uninucleate,
tapetal cells increase in size and the vacuoles become larger
and cytoplasm becomes restricted to the margins of the
vacuole (Figure 2B). Then, pollen grains keep growing,
accumulating reserves and become on the surface
surrounded by the exine layer (Figure 2C).

Figure 1. Anther development and microsporogenesis of Palicourea padifolia flowers. (A) Sporogenous tissue stage. Cross-section of an

entire LS anther showing four locules, the anther loculi containing sporogenous tissue. Note that the sporogenous cells have relatively large

nuclei and that a distinguishable tapetum has not yet differentiated. Scale bar = 36 um. (B) Detail of SS anther development showing the

microsporangium. Note the mitosis divisions (arrows), which give rise to the inner layers of the anther wall and sporogenous cells. Scale

bar = 20 um. (C) Microspore mother cell stage (MMC). Microsporangium of LS anther with MMCs towards the center and the anther wall

differentiated into five layers: epidermis, endothecium, two middle layers and tapetum. Scale bar = 20 pm. (D) Cross-section of a

microsporangium showing dyad formation (LS) surrounded by a callose layer. Note that the uninucleate tapetal cells contain a large vacuole

that displaces the nucleus and cytoplasm to the periphery, and are tightly adjoined to each other in contact with the middle layers of the anther

wall. Scale bar =25 pm. (E) Tetrad stage. Longitudinal section of a single locus showing tetrahedral tetrads (SS) with underling callose layer

surrounding the entire tetrad. Anther wall formed by the epidermis, endothecium, obliterate middle layers and tapetum. Scale bar = 16 pm. (F)

Detail of the tetragonal tetrad formation (LS). Note that a thick callose layer surrounds the tetrad. Scale bar = 18 um. dy = dyads,

e = epidermis, en = endothecium, md = middle layer, mmc = microspore mother cells, ta = tapetum, tet = tetragonal tetrads.
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Pollen development in Palicourea padifolia

Figure 2. Anther development, microsporogenesis and microgametogenesis of Palicourea padifolia flowers. (A) Free microspore stage.

Longitudinal section of a single locus showing free microspores at the early free microspore stage (LS). Note that the tapetal cells remain

closely abut and contain large vacuoles. Scale bar = 19 pm. (B) Uninuclear tapetum (LS) with large vacuole and dense cytoplasm. Scale

bar = 10 um. (C) Mature pollen stage. Haploid pollen grain (SS) with dense cytoplasm. Note exine deposits on the surface. Scale bar = 10 pm.

(D) Bicellular pollen grain (SS) with vegetative cell and generative cell. Tapetum fully collapsed. Scale bar = 20 um. (E) Mature pollen grain

(LS), tricellular (arrows). Scale bar = 20 um. (F) Cross-section of an anther showing mature pollen stage (LS). Note the thickenings of the

endothecial cells and that pollen grains are ready to exit since the septum that separates the microsporangium and the stomium are broken.

Scale bar = 100 pm. (G) Acetolyzed pollen grain (LS). The pollen grain is inaperturate with scabrate-verrucose ornamentation. Scale

bar= 10 um. gc = generative cell, vc = vegetative cell, e = epidermis, en = endothecium, md = middle layers, mi = microspore, mpg= mature

pollen grain, ta = tapetum, se = septum, s = stomium, sc = cells sperm.

Mature pollen stage. Mature pollen stage is exclusively
found in buds > 5 mm long and in mature flowers at
anthesis. Pollen grains pass through a mitotic division to
form bicellular pollen grains: a vegetative cell and a smaller
generative cell (Figure 2D). Then the generative cell
undergoes a second division to form two sperm cells
(Figure 2E). At this stage the mature anther wall consists of
epidermis and endothecium cells whose walls have
thickenings. Septa separating the sporangia break, allowing
the release of pollen grains (Figure 2F). Finally, the pollen
grains when leaving the anther are formed by the wall of the
pollen grain (exine and intine) and three cells: a vegetative
and inside of their cytoplasm two spermatic cells. Mature
pollen grains are inaperturate with scabrate-verrucate
surface ornamentation (e.g., Luo et al. 2009, Figure 2G).

Abnormalities. Based on the pattern and timing of tapetal
development and disappearance P. padifolia showed a
parietal tapetum (also known as secretory or glandular;
Pacini 1997). Abnormalities in pollen development were
observed at several ontogenetic stages. Pollen development
with tapetal degeneration occurred during the MMC stage
(microsporogenesis), which is more evident during the free
microspore stage (microgametogenesis). Low-frequency
abortion and abnormal pollen development were observed
in the MMC stage, but increased in the young pollen grains
immediately after meiosis. Microsporangia with aborted
pollen grains or that were completely empty were also
observed at later stages.
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Microspore mother cell stage. The most frequent
abnormalities during this stage of development in both
morphs were related to the tapetum and/or mother cells of
the microspores. In the latter is often observed inside the
cytoplasm collapsed and absence of nucleus. This cell
degeneration becomes more evident when comparing these
cells with other normal cells in the same locule (Figure 3A).
It is also frequently observed tapetal cells appearing empty
and with very thick walls between them, indicating their
atrophic condition. MMCs surrounded by a thick wall of
callose, contain a collapsed cytoplasm and an apparent
absence of nucleus (Figure 3B).

Free microspore stage. At this stage the greatest diversity of
abnormalities is observed during the stage of meiosis.
Locules are often observed with free microspores, totally
abnormal with or without traces of cytoplasm and irregular

shapes away from the spherical shape of normal
microspores (see Figure 2A). In addition, the tapetum either
does not exist (Figure 3C) or presents a completely atrophic
structure as the free microspores (Figure 3D).

Mature pollen stage. Hypertrophied structures are presented
at this stage in the anther locule, reminiscent of the pollen
grains by irregular deposition exine forming its wall and the
presence of a granular cytoplasmic deposited externally to a
large central vacuole. The tapetum is abnormally persistent
at this stage with its cell integrity and the collapsed
protoplast occupies the central area of the tapetum cell
(Figure 3E, F). No cases where there is a normal tapetum
but abnormal pollen grains were observed. Finally,
abnormalities occurred at the stage of anther dehiscence, in
which one or more of the sporangia are sterile due to never
having formed normal pollen grains (Figure 3G).

Figure 3. Abnormalities of Palicourea padifolia flowers. (A) Microspore mother cell stage. Cross-section of a microsporangium (SS). One of
the MMCs is degenerating. Scale bar = 10 um. (B) Cross-section of a microsporangium (SS). MMCs collapsed, covered by callose deposition.
Tapetum hypertrophied. Scale bar = 20 pm. (C) Free microspore stage. Longitudinal-section of a microsporangium (SS). Free microspores
folded lacking cytoplasm. Tapetum becomes thinner with little cytoplasmic content. Scale bar = 22 um. (D) Longitudinal-section of a
microsporangium (LS). Free microspores are abnormal, folded. Tapetal cells with large vacuoles are invading the anther locule. Scale
bar = 30 um. (E) Mature pollen stage. Detail of two folded pollen grains (SS), with irregular exine deposits on the surface. Scale bar =20 pm.
(F) Mature pollen stage (SS) with irregular exine deposits (inset, SEM). Scale bar = 50 pm. (G) Mature tetrasporangiate LS anther with
collapsed pollen grains in two microsporangia. Scale bar = 100 um. e = epidermis, en = endothecium, md = middle layer, mi = microspore,

mmc = microspore mother cell, mpg = mature pollen grains, ta = tapetum.
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Pollen development in Palicourea padifolia

Abnormalities in pollen development differed by floral
morph (> = 5.11, df = 1, p = 0.023), with a higher
proportion of samples with abnormalities in the SS across
developmental stages (LS = 5/350 floral buds, 1.4 %,
SS = 14/325 floral buds, 4 %). Tapetal degeneration is a
normal phenomenon, and in the examined samples
abnormalities occurred more often in the microspore mother
cell and free microspore stages. Abnormalities were more
often observed in the mature pollen stage (63 % of all
samples with abnormalities), and at this stage the number of
examined samples with abnormalities were significantly
higher in the SS morph (LS = 5/70 floral buds, 7.1 %,
SS = 13/65 floral buds, 22 %; x> = 5.77, df = 1, p = 0.016).
Assuming that abnormalities occurring at an early stage of
anther development are carried through to the mature pollen
stage (if the phenomenon is genetically based), the morph
difference was upheld (LS = 17/70 floral buds, 24.3 %,
SS =29/65 floral buds, 44.6 %; y*=6.21, df =1, p =0.012).
Because these percentages were derived from a randomly
selected sample of flowers in 2008, we are confident that
they reflect the true pattern of abnormal pollen development
in P, padifolia.

TUNEL assay. Signals of DNA fragmentation were
observed in anthers of SS morphs, which showed more
abnormalities during pollen development; only high-quality
images of the SS floral morph are presented (Figures 4 and
5). The assay was not conducted during the free
microspores stage because the microspores were collapsed
and nuclei in the anthers were degraded and they could not
be visualized even using DAPI. DNA fragmentation signals
are shown in green as a result of the fluorescein
incorporation at the 3’-OH in DNA breaks. Positive control
tissues (MMCs) were treated with DNase, after which
nuclei were seen with an intense green signal. In the case of
the negative control, the DNA transferase reaction did not
include TdT and therefore no localized fluorescence was
expected and only a general green background was
observed (Figure 4). Positive and negative controls are
indicated in the figure.

Reference stage DAPI

TUNEL
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TUNEL-positive signals (DNA fragmentation) were
detected at the MMC stage, specifically in the epidermis,
endothecium and tapetum. However, TUNEL-positive
signals were undetected in the nuclei of the MMCs,
indicating that DNA fragmentation had not occurred at
these stages (Figure SA-D). DNA fragmentation was also
observed at the pollen grain stage, in the nuclei of the pollen
grains and the tapetal cells. However, degeneration in the
tapetal cells is normal to observe at this developmental

stage (Figure SE-H).
Discussion

This study is the first on pollen development in
Palicourea padifolia and the first to report the entire
developmental sequence in both SS and LS flowers of a
distylous species in the genus using LM and SEM. In
general, pollen development in P. padifolia followed the
normal ontogenetic stages previously described in two
species of Rubiaceae, namely on Mitriostigma axillare
(Hansson & El-Ghazaly 2000) and Rondeletia odorata (El-
Ghazaly et al. 2001). Li et al. (2010) reported that the
occurrence of normal tapetum PCD following meiosis in the
SS morph of Mussaenda pubescens (Rubiaceae) fits well
with normal cases of tapetum development following
meiosis, while degradation of tapetum in the LS morph was
relatively earlier to normal in the SS morph. The tapetum
pre-degradation was interpreted as the developmental stage
that probably accounts for male sterility in the LS morph.
Several key pollen developmental characters of P. padifolia
are discussed next in light of what is known from studies of
other heterostylous species, particularly the abnormalities of
SS flowers in the context of male sterility. Because the plant
material was collected in a single population and differences
between morphs were not absolute (i.e., number of
individuals with abnormalities rather than just the number
of flowers per floral morph), note that the study was not
designed to detect that variation. However, we acknowledge

+ Control - Control

Figure 4. TUNEL assay to detect DNA fragmentation in SS flowers of Palicourea padifolia. (A) Cross-section of the anther at stage of MMC
stained with toluidine blue. (B) DAPI staining showing the nuclei with blue fluorescence. (C) TUNEL assay: green fluorescence indicates
nuclei that are positive for DNA fragmentation. (D) Positive control. Overlapping images exposing nuclei with DNA fragmentation.
(E) Negative control. Nuclei with DNA fragmentation are not visualized (green fluorescence) but nuclei with DAPI are visualized with blue
fluorescence in the overlapping images. ¢ = epidermis, en = endothecium, md = middle layers, mmc = microspore mother cell.
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Figure 5. DNA fragmentation detection by TUNEL assays in SS flower anthers of Palicourea padifolia. (A-D) Cross-section of anthers at the

MMC stage. (A) Cross-section of the anther at stage of MMC stained with toluidine blue. The anther wall is composed of epidermis,
endothecium, middle layers and tapetum; MMCs at the center. (B) DAPI staining evidencing the nuclei with blue fluorescence. (C) TUNEL
assay: nuclei with green fluorescence (positive signal for DNA fragmentation). (D) Overlapping DAPI and TUNEL images. Nuclei with DNA
fragmentation observed in the epidermis, endothecium, and tapetum. Scale bar: D = 10 um. (E-H) Cross-section of anthers in mature pollen
stage. (E) Detail of a pollen grain. The anther wall is composed of epidermis, endothecium, and tapetum stained with toluidine blue. (F) DAPI
staining evidencing blue fluorescence in the nuclei of pollen grains and tapetum. Note fluorescence of the exine. (G) TUNEL assay: green
fluorescence in the nuclei of pollen grains and tapetum. (H) Overlapping DAPI and TUNEL images. Nuclei of the tapetum and pollen grains
(arrows) are fragmented. Scale bar: H = 70 um. e = epidermis, en = endothecium, md = middle layers, mmc = microspore mother cell,

mpg = mature pollen grains, ta = tapetum.

that the linkage between morph type and male sterility is
not complete, and could vary among individuals and years
and across populations if the effect is a genotypic one, i.e.,
genotypic variation in loss of male function (Rosas &
Dominguez 2009, Zhou et al. 2012, 2017, Kappel et al.
2017, Shore et al. 2019).

Sporogenous male sterility. The phenotypic expression of
male sterility often involves pollen abortion; however, male
sterility ranges from indehiscent anthers that contain viable
pollen to the absence of male reproductive organs in flowers
(Kaul 1988). Embryological studies have detected that
failure in pollen development during or after the tetrad stage
is often associated with tapetal degeneration (Raghavan
1997), and tapetal degeneration during pollen development
is a well-documented cause of male sterility (Kaul 1988).
Two investigations have examined pollen developmental
differences between or among morphs in heterostylous
species. In tristylous Pontederiaceae, the three anther levels
within flowers enter meiosis at different times, and
differences in pollen mother cell numbers, as well as size,
are present prior to meiosis (Richards & Barrett 1984,
1992). Abnormal pollen development was documented
during meiosis in distylous Erythroxylum havanense
(Erythroxylaceae), and the failure to develop a fertile
androecium among SS flowers seemed a consequence of
abnormalities observed at the sporogenous tissue, the
tapetum layer, and the microspore (Dominguez et al. 1997).
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In P, padifolia, we observed that the tapetal cells begun to
degenerate shortly after microspore release from the tetrad,
which is normal pollen development. Presumably, this cell
death is programmed and occurs after microspores are
released from the tetrad for proper microspore development
and further differentiation into mature functional pollen
grains (reviewed in Wu & Cheung 2000). However, we also
observed manifestations of male sterility with more
abnormalities at the MMC, tetrad, and young pollen grain
stages. Abnormal microsporogenesis in P padifolia
expressed early in development at the MMC stage, indicates
that abnormalities are manifestations of male sterility due to
tapetal degeneration. Post-meiotic abortion also produced
morph differences in P. padifolia; anthers with all
microsporangia empty or with microsporangia empty and
with aborted pollen grains (the only result that maters to
fitness) were more often observed in samples of SS flowers.
We believe that the shifts in timing of tapetum PCD cause
the phenomenon of DNA degeneration in developing
pollen. Our results indicate that the early degeneration of
the tapetum, or indications of abnormality such as
hypertrophication, causes MMC, microspore, or pollen
grain degeneration because of a lack of nourishment or
correct signaling during development, and that pollen
sterility is likely caused by a defective tapetum.
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Our developmental study showed that signals of pollen
sterility were less often observed among samples of LS
anthers, which suggests a higher investment of resources in
the production of pollen; reallocation of those resources to
produce more and/or better seeds in SS plants. Given the
invariant number of ovules per flower in P. padifolia,
compensation effects could be expected in seed mass or
total seed production (Cuevas-Garcia et al. 2005).

male sterility might be the mechanism for the initial spread
of gender specialization leading to the transition of
heterostyly into dioecy (Muenchow & Grebus 1989, Shultz
1994, Dominguez et al. 1997). However, there is evidence
that under some ecological scenarios, heterostyly evolves
into other derived reproductive systems (Ganders 1979,
Bawa & Beach 1981, Lloyd & Webb 1992b, Castro et al.
2004, Sakai & Wright 2008, Consolaro et al. 2011). For

Herndndez & Ornelas (2007a) showed morph differences in
resource allocation in P. padifolia, in which LS flowers
invested twice as much biomass to the male function than
SS flowers in relation to the female function. However, data
on reproductive compensation and detailed descriptions of
female gametophyte development are needed to discern
whether populations with females and hermaphrodites
(gynodioecy) are an intermediate condition by which dioecy
evolves from hermaphroditism (see also Vazquez-Santana
etal. 1996, Li et al. 2010).

Our pollen development data and results of the TUNEL
assay suggest a higher incidence of abnormalities (collapsed
sporangia and pollen abortion) and DNA fragmentation (in
the nuclei of the pollen grains) at the pollen grain stage of
SS flowers. Abnormalities were observed in both morphs at
various developmental stages due to the mis-timing of
tapetal degeneration. However, more abnormalities occurred
in the pollen grain stage of SS flowers, indicating SS
partially male sterility. The TUNEL assay implies early
senescence due to malnutrition from a defective tapetum, in
which mutations might affect the timing of the already
present PCD in the tapetum, and that the mis-timing of
tapetal degeneration would cause pollen cell death by lack
of proper nutrition or signal timing from the tapetum.
Furthermore, the developmental pathways of SS flowers of
P padifolia resemble those in gynodioecious species
leading to male sterility with cytoplasmic male sterility,
closely linked to tapetal degeneration (Kaul 1988, Conley et
al. 1994, Cuevas-Garcia et al. 2005, Li et al. 2010).
Regardless of these similarities, the higher incidence of
male sterility among SS flowers would provide the
mechanism for the transition to functional dioecy from
distyly (reciprocal herkogamy). Further comparative pollen
developmental studies that examine pollen developmental
patterns of homostylous relatives (or species with distylous
and homostylous populations) should provide new insights
to the understanding of male sterility in the functioning of
heterostyly.

Transition from distyly to dioecy. Heterostyly is one of the
hypothesized steps in a pathway from homostyly to
heterostyly to sexual dimorphism (dioecy) in Rubiaceae
(Pailler & Thompson 1997, Pailler et al. 1998a) and in other
families (e.g., Erythroxylaceae; Pailler et al. 1998b, Avila-

Sakar & Dominguez 2000, Rosas & Dominguez 2009), and

example, with inbreeding advantage (i.e., pollinator
shortage, population bottlenecks, and/or colonizing events),
natural selection would favor recombination within the
distyly supergene and the consequent evolution of
homostyly (Barrett et al. 1989, Barrett 1990, Carlson et al.
2008, Barrett et al. 2009, de Vos et al. 2012, 2014). In
contrast, on the basis of sexual selection and sex allocation
theory, floral morphs may exhibit gender specialization and
gain differential reproductive success through male versus
female function (reviewed in Casper 1992) and, eventually,
heterostyly or reciprocal herkogamy evolves into dioecy
(Muenchow & Grebus 1989, Barrett et al. 2000, Barrett
2002, Rosas & Dominguez 2009, Li et al. 2010).

Congeners of distylous species in Rubiaceae, dispersed
among 21 tribes in the family according to Barrett &
Richards (1990), are often homostylous species, suggesting
that heterostyly has evolved repeatedly in the Rubiaceae
(Castro et al. 2004, Sé et al. 2016). As first pointed out by
Darwin (1877), sexual dimorphism could evolve from
heterostyly as a result of gender specialization, with the LS
and SS floral morphs no longer making equal contributions
to offspring as paternal and maternal parents. Several
authors have proposed that dioecy evolves from heterostyly
when pollen transfer between floral morphs is highly
asymmetrical (Ornduff 1966, Beach & Bawa 1980). The
classical Darwinian explanation for the transition to dioecy
from distyly proposes that the pollinator-driven
asymmetrical pollen transfer between floral morphs,

resulting from low reciprocity among sexual organs (e.g.,
Feinsinger & Busby 1987, Lau & Bosque 2003, Ornelas et
al. 2004a, Stone & Thomson 1994, Hernandez & Ornelas
2007a, Garcia-Robledo 2008) and lower accessibility of
low-level sexual organs and pollinator behavior (Liu et al.
2016, Yuan et al. 2017), would favor maleness in the morph
with higher pollen donation efficiency (usually SS), and
femaleness in the morph receiving more legitimate pollen
(usually LS) (Darwin 1877, Ornduff 1966, Lloyd 1979,
Beach & Bawa 1980). Asymmetries in pollen flow might be
an important first step towards gender specialization. Here
we showed that failures in pollen transfer, which deviates
P. padifolia from the expected disassortative pollination in
distylous plants (Darwin 1877, Lloyd & Webb 1992b,
Barrett 2002, 2019, Jiang et al. 2018), are potentially
accompanied by major male sterility in SS flowers.
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Asymmetrical pollen transfer has been observed in
several distylous Palicourea species, with higher
percentages of compatible pollination in the LS-morph than
in the SS-morph in P. fendleri (Lau & Bosque 2003) and
P. tetragona (Martén-Rodriguez et al. 2013), while other
species (P. lasiorrachis, Feinsinger & Busby 1987;

the floral morphs and eventually the evolution of separated
sexes. This is unlikely the sole explanation for gender
specialization because reciprocal herkogamy, stigmatic
pollen loads and the pollinator communities visiting flowers
of P. padifolia populations vary across time and space
(Hernandez & Ornelas 2007a, Herndndez-Ramirez 2018).

P. demissa, Valois-Cuesta et al. 2011a, b, 2012) including
P. padifolia (Ornelas et al. 2004a, Hernandez & Ornelas
2007b) have the opposite pattern, i.e., more compatible
pollination in the SS-morph than in the LS-morph. In
P padifolia, Hernandez & Ornelas (2007a) found that
pollen receipt was not affected by reciprocal herkogamy,
typically associated with the efficiency of this floral
polymorphism in promoting disassortative pollination, and
legitimate cross-pollination was reduced significantly in LS
plants  with  increased  stigma-anther  separation.
Accordingly, increased herkogamy in SS flowers might
favor gender specialization, SS flowers being more effective
as receptors of legitimate pollen (femaleness in SS flowers)
and LS flowers as pollen donors (maleness in LS flowers).
In Palicourea fendleri, Lau & Bosque (2003) found that
Amazilia tobaci hummingbirds were more efficient
depositing legitimate pollen on stigmas of SS flowers than
on those of LS flowers. Using stuffed hummingbirds as
pollen vectors, Ornelas et al. (2004a) found that long-billed
hummingbird species transferred significantly more pollen
from LS towards SS flowers than in the opposite direction
in P. padifolia. Although asymmetrical pollen transfer
between floral morphs seemed to favor SS plants of
P. padifolia, the observed variation in pollen removal and
pollen receipt was not explained by the variation in
hummingbirds’ bill morphology, nor did they find evidence
that hummingbird bill morphology solely explained the
differences in fruit production between LS and SS-morph
individuals (Ornelas et al. 2004b). If we consider that the
bill size of a hummingbird is the determining factor in the
direction of pollen flow between morphs in hummingbird-
pollinated Palicourea species, Valois-Cuesta et al. (2011b)

Instead, long- and short-billed hummingbird species may
complement each other in the legitimate pollination of
P. padifolia across populations. For instance, Deschepper et
al. (2018) surveyed pollinator communities visiting flowers
of the distylous Primula veris (Primulaceae) in which the
positioning of the anthers and stigmas differ between
flowers of forest and grassland populations. They measured
anther-stigma separation in the two habitats, assessed pollen
uptake on the head and proboscis of each of the pollinator
species observed, and compared stigmatic pollen deposition
and subsequent seed set between SS and LS flowers of
P. veris. The forest and grassland P. veris populations
contained distinct pollinator communities, in which long-
and short-tongued insects complemented each other in the
legitimate pollination of this distylous species and that
differences in floral morphology do not impact on
reproductive success. Lastly, other ecological conditions
inducing reproductive costs (i.e., nectar robbers, herbivores;
see also Ornelas et al. 2004b, Chautd et al. 2017) might
contribute as selective mechanisms responsible for gender
specialization and the evolutionary transition of heterostyly.
However, little is known about the early stages of this
transition, including the genetic and developmental basis for
the evolution of unisexuality such as sterility mutations
differentially expressed between the floral morphs (e.g.,
Dominguez et al. 1997, Pailler et al. 1998a, del Carlo &
Buzato 2006, Rosas & Dominguez 2009, Li et al. 2010).

In previous work with P. padifolia, it has been suggested
that the reproductive differences between floral morphs are
due to asymmetrical pollinator service favoring SS
individuals (Ornelas et al. 2004a, Herndndez & Ornelas
2007a). When the possibility of asymmetrical pollen flow

proposed that long-billed hummingbird species play a major
role in pollen transfer between reproductive organs at low
levels (from anthers of LS flowers towards stigmas of SS
flowers), whereas short-billed hummingbird species would
be more efficient in the transfer of pollen grains among
reproductive organs positioned at higher levels (from
anthers of SS flowers towards stigmas of LS flowers).
Accordingly, the most frequent long-billed hummingbird
species deposited 2 times more legitimate pollen grains on
SS emasculated flowers than LS emasculated flowers in
Palicourea demissa. In contrast, the less frequent short-
billed hummingbird species deposited 2.3 times more
legitimate pollen on LS than SS emasculated (Valois-Cuesta
et _al. 2012). Accordingly, the pollinator-driven selective
regime would favor a process of sexual divergence between
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was ruled out by means of experimental pollination (hand-
pollination and pollination by stuffed hummingbirds), the
fecundity differences between floral morphs held (Ornelas
et _al. 2004a), suggesting that asymmetrical pollinator
service is not the sole explanation for the observed
differences in fecundity where SS plants develop almost
twice the number of fruits developed by LS plants. Here our
results suggest that abnormalities of pollen development in
P padifolia are biased to partially male sterility in SS
morph. Although male sterility is far from being complete,
the SS-biased male sterility would provide the initial
conditions for the transition of heterostyly and the selective
pressures promoting gender specialization in P. padifolia.
Further study of the anther transcriptome and digital gene
expression profiling is necessary to identify candidate genes
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contributing to anther and pollen development, particularly
those that regulate tapetum and pollen development (e.g.,
Yue et al. 2017). In addition, development of female
structures must be investigated, especially how the
incompatibility system works in each morph. A relaxation
of the incompatibility system in the SS morph might be an
explanation for femaleness more than maleness in this
morph. Comparisons of anther and pollen transcriptomes
through development would undoubtedly reveal the gene-
expression differences along the pathway from homostyly
to heterostyly to gender specialization and sexual
dimorphism (dioecy) in Rubiaceae (Yue et al. 2017, Barrett
2019).
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