Etnobotánica

  

DOI: 10.17129/botsci.2423

Agroforestry systems of a Zapotec community in the Northern Sierra of Oaxaca, Mexico

Sistemas agroforestales de una comunidad zapoteca de la Sierra Norte de Oaxaca, México


Abstract

Background:

Agroforestry systems have cultural, economic, social, and biodiversity conservation significance and are essential for the subsistence of communities.

Questions:

Is there a difference in the richness, management and use of useful plants present in the agroforestry systems (home gardens, coffee plantations, and milpa)? What is the influence of sociodemographic factors on the distribution of traditional knowledge regarding plants of these systems?

Site and years of study:

Las Delicias, municipality of Juquila Vijanos, Sierra Norte of Oaxaca, Mexico, from January 2016 to May 2018.

Methods:

Visits to three agroforestry systems and semistructured interviews with 30 families to learn how they use the plants and to calculate the use value (UV) for each species. The similarity of floristic composition between agroforestry systems and the influence of sociodemographic factors (age, gender, schooling, economic activity and language) in the traditional plant knowledge was evaluated. The methods used were chi squared and proportions analyses, and a generalized linear analysis with Poisson distribution.

Results:

The three agroforestry systems consisted of 211 of useful plants; home gardens and coffee plantations had a greater similarity in floristic composition; the dissimilarity of the milpa agroecosystem is related to seasonality. The plants with higher UVs were those with multiple uses, and are found mainly in coffee plantations. Production in these spaces is complemented to satisfy the needs of the inhabitants. Gender and economic activity are factors that influence the distribution of traditional knowledge.

Conclusion:

Agroforestry systems provide a species richness differentiated for specific purposes but complementary to each other.

 

Key words: 

coffee plantation; home gardens; milpa; use value.

Resumen

Antecedentes:

Los sistemas agroforestales tradicionales tienen una importancia cultural, económica, social y en conservación de la biodiversidad; son esenciales en la subsistencia de las comunidades.

Pregunta:

¿Existe diferencia en la riqueza, manejo y uso de plantas útiles presentes en los sistemas agroforestales (huertos familiares, cafetales, milpa)? ¿Cuál es la influencia de los factores sociodemográficos en la distribución del conocimiento tradicional sobre las plantas de estos sistemas?

Sitio y años de estudio:

Las Delicias, municipio de Juquila Vijanos, Sierra Norte de Oaxaca, México; de enero de 2016 a mayo de 2018.

Métodos:

Recorridos por tres sistemas agroforestales y entrevistas semiestructuradas a 30 familias, para calcular el Valor de Uso de cada especie vegetal. Se evaluó la similitud de la composición florística entre los sistemas agroforestales y la influencia de factores sociodemográficos (edad, sexo, escolaridad, ocupación e idioma) en el conocimiento tradicional de plantas, mediante pruebas de Ji cuadrada, de proporciones y de un modelo lineal generalizado con distribución Poisson.

Resultados:

Los sistemas agroforestales estudiados conservan 211 especies vegetales útiles; los huertos familiares y los cafetales tienen una mayor similitud florística; la disimilitud del sistema milpa se relaciona con su temporalidad. Las plantas con mayor Valor de Uso fueron las que tienen múltiples usos y presentes en los cafetales. La producción se complementa para satisfacer las necesidades de los pobladores. El sexo y la ocupación están influyendo en la distribución del conocimiento tradicional.

Conclusión:

Los sistemas agroforestales proporcionan una riqueza de especies diferenciada con propósitos específicos, pero complementaria entre sí.

 

Palabras clave: 

Cafetal; huertos familiares; milpa; Valor de Uso.


 

Societies in the world have practiced the cultivation of arboreal species in agricultural spaces in close relation to the main purpose of food production (Steppler & Nair 1987, Nair 2011). In tropical America, farmers have traditionally simulated forest conditions in their crop fields, mimicking the structure of forests by planting species with different growth habits (Steppler & Nair 1987). Agroforestry systems "combine agricultural crops, tree crops, and forest plants and / or animals simultaneously or sequentially, and applies management practices that are compatible with the cultural patterns of the local population" (Bene et al. 1977). These systems are distinguished by integrating agricultural, forestry and cultural diversity (Moreno-Calles et al. 2016) and have been maintained over time to produce food, fiber, and fuel, among other essentials (Power 2010, Boafo et al. 2016), which is why they are considered the best option for food security and biodiversity conservation (Segnon et al. 2015).

Multi-strata agroforestry systems have shown that they can contribute to the conservation of tropical biodiversity when forests are maintained within the agricultural landscape (Harvey & González-Villalobos 2007). Among the main agroforestry systems are agroforests, home gardens, terraces, and shifting cultivation or slash-and-burn agricultural systems (Moreno-Calles et al. 2016); in addition, they are characterized for their plant diversity in form of polycultures and agroforestry patterns (Rosset & Altieri 2018).

In Mexico, agroforestry systems are part of a biocultural heritage (Moreno-Calles et al. 2013) where woody species in agricultural spaces are used as fruit trees, firewood, shade, ornaments, respect for nature and other environmental benefits (Vallejo et al. 2014). This cultivation system is used in the milpa in Yucatán, where the farmer selects some suitable woody species for construction, trees, fruit trees and shade (López-Forment 1998). In studies carried out in Mayan family gardens, a mosaic of stages is observed as in natural vegetation, and fulfills the function of protecting the resources of forest vegetation and the processes of the natural ecosystem of the area (De Clerck & Negreros-Castillo 2000).

Another important agroforestry system in Mexico is the traditional shaded coffee plantations produced mainly by small producers of indigenous communities and located in areas of biogeographic and ecological importance (Moguel & Toledo 1999). In the coffee plantations of the Sierra Norte de Puebla it was found that 80 % of native plants that are mainly used as medicinal and edible (Martínez et al. 2007). In the Sierra Sur of Mexico, the set of heterogeneous plantations of coffee plantations has proven valuable for the conservation of plant diversity (Bandeira et al. 2005)

At present, the conservation of areas with biodiversity is necessary, but also the satisfaction of human needs with the development of sustainable ways to use the resources that local ecosystems provide (Sarukhán et al. 2009). Traditional agroforestry systems can help maintain a higher level of biodiversity compared to practices that require greater transformation of ecosystems (Schroth et al. 2004, Bhagwat et al. 2008).

In this context, the importance of plant resources has been evaluated quantitatively through ethnobotanical indices, with use value (UV) being the most widely used indicator (Phillips & Gentry 1993 a,b, Ribeiro et al. 2014, Shaheen et al. 2015, Kunwar et al. 2016, Lopes et al. 2017). The use of plant resources is influenced by socioeconomic factors, with age, gender, schooling, language and economic activity being the most influential (Saynes-Vásquez et al. 2013, Andriamparany et al. 2014, Laleye et al. 2015, Segnon et al. 2015, Kunwar et al. 2018). In this study we define primary economic activities as those involve natural resource extraction and management, whereas tertiary activities are the providing of services.

In this study, the use value index was used to determine the importance of useful plants in three agroforestry system (home gardens, milpa and coffee plantations) in the town of Las Delicias, municipality of San Juan Juquila Vijanos, Sierra Norte. This region has great biological and cultural diversity, which is why it is recognized as part of a priority Terrestrial Region (number 130, Arriaga-Cabrera 2009) and Biocultural Region (number 17, Boege 2008), classifications that consider centers of origin, species diversification, and the presence of agroecosystems with domesticated native agrobiodiversity. Therefore, it is important to know the plant diversity in these agricultural spaces, the importance they have and how people manage them. Thus, this study aims to answer the following questions: 1) What plants of the three agroforestry systems are used in this Zapotec community, and what is the UV of these species? 2) What agroforestry system contains plants with the greatest UV? 3) What floristic similarity exists between agroforestry systems? 4) What sociodemographic factors influence the distribution of knowledge of plants in the community of Las Delicias?

Materials and methods

Study area. The locality Las Delicias is located in the communal lands of the municipality of San Juan Juquila Vijanos, Sierra Norte (Figure 1). Groups of people of Zapotec culture (INEGI 2005) settled there; therefore, the inhabitants have deep traditional knowledge about use and management of natural resources (González 2001). It occupies 62.02 km2; 77.80 % of the vegetation corresponds to forest, 20.20 % to agriculture and 2.0 % to human settlements (INEGI 2005). Because land ownership is communal (González 2001), the inhabitants can own land in any part of the municipality.

Figure 1. 

Location of Las Delicias, in San Juan Juquila Vijanos, Sierra Norte, Oaxaca, Mexico.

The climate is semiwarm humid and temperate wet (INEGI 2005). Precipitation ranges from 1,200 to 2,000 mm (INEGI 2005), is common throughout the year but reaches maximum levels in summer (Pérez-García & Del Castillo 2016). Middle temperature ranges from 16 to 22 °C. The altitude ranges from 900 to 2,400 meters above sea level, The landscape is composed of riparian vegetation, pine forest, pine-oak forest, cloud montane forest, secondary vegetation and cultivated areas like milpa and coffee fields, (Del Castillo & Blanco-Macías 2007, Pérez-García & Del Castillo 2016).

Of the above, shade-grown coffee represents the majority of economic income for the local farmers (Nader 1964). The mosaic of natural vegetation with interspersed cultivated areas (Figure 2) is due to slash-and-burn systems (Pérez-García & Del Castillo 2016).

Figure 2. 

Vegetation surrounding the community of Las Delicias, Juquila Vijanos, Sierra Norte, Oaxaca, Mexico.

Field work. The study was conducted from January 2016 to May 2018. We choose 30 families at random (Abdoellah et al. 2006); in 15 households, only women were interviewed, and in the other 15 households, only men were interviewed. All families had all three agroforestry systems (home gardens, coffee plantations and milpa), and each collaborator was interviewed once in each agroforestry systems. Semistructured interviews were applied to determine the useful plants in each agroforestry systems the destination (self-consumption, selling or bartering), the part used (whole plant, fruit, leaves, stem, flowers, root, seeds, and pods), the degree of management of plants (cultivated, wild, tolerated, promoted and protected) according to De Wet & Harlan (1975), and the use (food, medicinal, ornamental, live fence, firewood, shade, construction, domestic use and forage). Likewise, sociodemographic data were obtained, such as age, gender, schooling, economic activity and language (Spanish and/or Zapotec).

The ethnobotanical surveys were carried out in the three agroforestry systems of each collaborator (Albuquerque et al. 2014), in total there were ninety interviews. The plants were photographed, some identified in the field and others collected for identification and deposition in the herbarium of the Interdisciplinary Center for Regional Integrated Research and Development-National Polytechnical Institute (Centro Interdisciplinario de Investigación y Desarrollo Integral Regional- Instituto Politécnico Nacional, CIIDIR-IPN), Oaxaca.

Statistical analysis. The similarity in floristic composition among agroforestry systems was performed with the Sørensen index with paired tests: SI = (2C/A + B) × 100, where A is the number of species in community A, B is the number of species in community B, and C is the number of species in both communities (Moreno 2001, Castillo et al. 2014).

To determine the use value (UV) of the species (Phillips & Gentry 1993 a,b, La Torre-Cuadros & Islebe 2003, Thomas et al. 2009), we calculated the UV by species for each collaborator i (UVis) and then the UV for each species s (UVs). The UVis calculated as UVis = Σ Uis/nis, where Uis is the number of uses the collaborator i refers to the species s in an interview (event), and nis is the number of events for species s with collaborator i. We conducted three events per collaborator. Finally, the UV for each species was calculated as UVs = ΣUVis/ns, where ns is the number of collaborators interviewed for a given species.

The differences in the number of species for the life-form, the origin (introduced, native) and the degree of management of the species in general and among them were analyzed with the chi-square test (χ2), and in the cases where differences between groups were found, paired tests were conducted. The proportions test was used to analyze the overall and between-agroforestry systems differences in the categories of richness, destination, part used and use of the species (Conover 1999, Agresti 2002, Mendenhall et al. 2013). In the post hoc tests, Bonferroni correction was performed for both the chi-square and proportional tests (Agresti & Finlay 2009). These tests were performed with the R statistical environment (R Core Team 2016).

The UV data of the species of the agroforestry systems were analyzed in the program InfoStat (Di Rienzo et al. 2008). Due to the nature of the data, the nonparametric Kruskal-Wallis test (Mendenhall et al. 2013) was used to evaluate whether the differences in the UV between agroforestry systems are statistically significant. From this, a post hoc analysis was performed to determine between which pairs of agroforestry systems the difference resided (Conover 1999).

The sociodemographic factors related to the traditional knowledge of plants used were evaluated with a generalized linear analysis with a Poisson distribution and log link function (McCullagh & Nelder 1983) in the program IBM SPSS v.26 (IBM 2019). And the sum of squares (SS) Type III is used because Type III SS adjusts the sums of squares to estimate what they might be if the design were truly balanced (Hershberger 2005). The number of known species was used as a quantitative measure of traditional knowledge (Souto & Ticktin 2012, Beltrán-Rodríguez et al. 2014).

Results

Home gardens are located in the front and back of houses. Each family establishes the arrangement based on the available space and its needs; therefore, there is no distribution pattern. The farmers delimit the spaces with vegetables with mesh to protect them from breeding animals (hens and sheep), which they call ‘cercos’ (fences). Home gardens are mostly managed by women, who decide which species to introduce to the gardens, particularly ornamental and edible species. The men perform activities such as weeding, clearing of land for planting and irrigation.

Coffee cultivation is one of the main economic activities for the inhabitants. Each family has at least one parcel for coffee and can use it for commerce or self-consumption during that year. Coffee plantations are planted in areas with secondary vegetation and accompanied by various crops. In some cases, they are sown between pine forests (Pinus chiapensis), where these trees provide the main shade to the crop.

The milpa system is usually conducted along terraces. Farmers plant four types of maize based on their color: white, red, black and yellow. There are two types of milpa according to altitude: cold (tierra fría) and hot (tierra caliente) lands (yu ziág and yu tza'a, respectively), which determine the type of management given to these systems. In cold lands, the slash-and-burn system is used. These lands generally consist of permanent agriculture, in which ornamental or shade trees are maintained along the edges of the land. In hot lands, oxen are used to stir-up the earth, and the planting spaces are intermittent. According to the inhabitants, there is a greater richness of useful plants in cold zones.

Richness of species in agroforestry systems. The total richness of useful species in these spaces was 211 species and 32 varieties, distributed in 80 botanical families and 176 genera (Supplementary data 1). Asteraceae, Fabaceaeae, Solanaceae and Cucurbitaceae were the families with the greatest number of species in the three agroforestry systems. A large variety of beans (Phaseolus), squash (Cucurbita), chayote (Sechium), bananas (Musa) and chilis (Capsicum) were recorded. The resources are used for home-consumption, in some cases for sale and to a lesser extent bartering.

Home gardens showed the greatest species richness, followed by coffee plantations and milpa (Figure 3 and Figure 10). Relevant aspects were detected in the diversity of species in each agroforestry system (Table 1).

Table 1. 

Relevant aspects of the diversity of plant species in the agroforestry systems of Las Delicias, Oaxaca

Agroforestry systemsDiversity
Home gardenCharacterized by ornamental plants such as roses (Rosa) and lilies (Lilium) and plants used in the diet: ‘cebollina’ white garlic (Allium neapolitanum), epazote (Dysphania ambrosoides), coriander (Coriandum sativum), chilis (Capsicum spp.), guava (Psidium guajava), peach (Prunus pérsica) and citrus. There is also a significant presence of epiphytes, some in the risk categories of the NOM-059-SEMARNAT-2010 of the SEMARNAT (Secretary of Environment and Natural Resources): orchid (Prosthechea vitellina), which is subject to special protection, and one bromeliad (Tillandsia imperialis) that is considered threatened.
  
Coffee plantationThe diversity associated with coffee plantations is mainly made up of trees that serve as shade for the main crop. Among the main species are ‘yavito’ (Liquidambar straciflua), ‘palo de águila’ (Alnus acuminata), ‘yedou’ (Clethra mexicana) and ‘guajinicuil’ (Inga jinicuil). When clearing land, some medicinal species such as arnica (Tithonia diversifolia), ‘huele de noche’ (Cestrum nocturnum) and ‘gordolobo’ (Pseudognaphalium viscosum) remain. They also harbor one pine (Pinus chiapensis) subject to special protection and one threatened species of palm ‘tepejilote’ (Chamaedora oreophila) according to NOM-059-SEMARNAT-2010.
  
MilpaBecause it is a seasonal system, milpa mainly host herbaceous plants. The main crop of maize (Zea mays) is associated with varieties of squash (Cucurbita spp.) and bean (Phaseolus spp.), in addition to wild ‘quelites’ potherbs such as the quelite de piojito (Galinsoga parviflora) and the ‘cuan bech’ (Phytolaca icosandra). However, in cold land crops, trees remain, either for their edible fruits, such as mango (Mangifera indica), or for their ornamental value and shade, such as the xóchitl or yaj zá'a (Magnolia macrophylla var. dealbata (Zucc.) D. L. Johnson.).

Figure 3. 

Richness of useful species in agroforestry systems.

The proportions test showed significant differences in the richness of useful species among the three agroforestry systems (χ2 (2,211) = 162.71, p < 0.001), with the richness of the home gardens and coffee plantations significantly different from that of the milpa (Supplementary data 2).

The tests also showed that self-consumption is the main destination of plant species (χ2 (2,211) = 492.11, p < 0.001), followed by their sale (Figure 4), mainly vegetables such as ‘cebollina’ (Allium neapolitanum), peas (Pisum sativum) and fava beans. Species that the inhabitants mentioned they used for bartering were beans (Phaseolus spp.), and squash seeds (Cucurbita spp.).

Figure 4. 

Destination of plant species from agroforestry systems.

In agroforestry systems in general, there is a greater amount of native plants than introduced plants (χ2 (1,211) = 7.20, p = 0.001). When comparing agroforestry systems, a statistically significant difference was observed (χ2 (2,211) = 45.51, p <0.001), where the highest percentage of introduced species was detected in home gardens due to ornamental species brought from the city. In contrast, coffee plantations and milpa presented higher percentages of native species (Figure 5).

Figure 5. 

Origin of species from agroforestry systems.

The life-forms in the three agroforestry systems were herbaceous, trees, shrubs, climbing, epiphytes and ferns (Figure 6). The proportions test (χ2 (2,119) = 63.21, p < 0.001) showed that the herbaceous plants are found in greater proportion in the three systems, the coffee plantations harbored more trees, shrubs are scarce in milpa, and the remaining categories, such as climbing, epiphyte and fern, showed no statistically significant differences among agroforestry systems (Supplementary data 2).

Figure 6. 

Life-form of species from agroforestry systems.

The whole plant is used more frequently than any of its parts alone, mainly as decoration in home gardens or to provide shade (64 %) (χ2 (7,211) = 453.83, p < 0.001). The most commonly used parts of the plants were the fruit, leaves, stem, and flower, and, to a lesser extent, the seeds, pods and roots (Figure 7).

Figure 7. 

Part used of species from agroforestry systems.

Cultivated plants had greater representation in these agricultural spaces (χ2 (4,211) = 314.19, p < 0.001), followed by wild plants that are used and, to a lesser extent, tolerated, promoted and protected. In the home gardens, a greater number of cultivated plants was recorded, while wild plants predominate in the coffee plantations (Figure 8).

Figure 8. 

Degree of management of species from agroforestry systems.

The main function of agroforestry systems in the community is the provision of food; therefore, food use was the main categorie (χ2 (8,211) = 260.83, p < 0.001), followed by ornamental, firewood, shade, medicinal, hedgerow, construction, forage and domestic use (Table 2). Although the pattern of use of plants is similar in the three agroforestry systems, home gardens had an important component of ornamental plants while woodlands had an important component of firewood, shade and construction (Figure 9).

Table 2. 

Categories of uses of plant species in agroforestry systems.

CategorieUses of plant species
FoodOne of the main functions of tree, shrub and herbaceous species is the production of food in a short time, which guarantees food security, at least for one season of the year, primarily ‘quintolines’ edible greens (Amaranthus hibridus), ‘chepiles’(Crotalaria longirostrata), ‘verdolagas’ (Portulaca oleracea), chayote (Sechium), squash (Cucurbita) and fruits such as oranges, guavas, peaches and bananas.
MedicinalThe medicinal use of plants is relevant, due to their rapid and economic access. Among the plants most commonly used are ‘hierbabuena’ spearmint (Mentha spicata), chamomile (Matricaria recutita), citrus leaves and arnica to relieve stomach discomfort.
OrnamentalThis category has a large representation in home gardens, mainly introduced species. Its main function is the decoration of houses on the outside or for vases (when the flowers are cut from species in coffee plantations or milpa). Among the most frequent are ‘agapandos’ (Agapanthus praecox), gladiolas (Gladiolus grandiflorus) and ‘alcatraces’ (Zantedeschia aethiopica).
FirewoodFirewood is a traditional and accessible fuel for the rural population, and the inhabitants mainly source from the dry branches of the trees and bushes of the coffee plantations they collect from. Among some trees are the genus Inga, the yag yere trumpet tree (Cecropia obtusifolia), ‘palo rojo’ (Heliocarpus donnellsmithii) and ‘palo blanco’ (Heliocarpus appendiculatus).
ShadeThe trees with the greatest shade presence were the small-pod (Inga jinicuil) and the large-pod (Inga edulis). The frequency of this species is due to the strategies implemented by INMECAFE in the 1970s, in which the use of species of the genus Inga and fruit trees of the genus Citrus as a shade was promoted.
Domestic useSpecies with domestic use have various purposes, For example, dried leaves of sugarcane (Saccharum officinarum) are used to protect panela (unrefined whole cane sugar), bule (Lagenaria siceraria) is used to transport water or serve food or coffee, and the yaj xúba (Sida rhombhifolia) is also used to sweep the courtyards or to clean the houses.
HedgerowsHedgerows are used to delimit, protect and create boundaries for crops and livestock, in addition to providing food, medicine, ornaments and fuel. These plants provide scenic beauty and firewood for fuel and produce edible fruits such as plantains.
ConstructionThe species used in construction are obtained mainly from coffee crops and are also used as shading, among which are ‘yavito’ (Liquidambar straciflua), ‘palo de águila’ (Alnus acuminata), ‘guajinicuiles de vaina pequeña’ (Inga jinicuil), ‘guajinicuiles de vaina grande’ (Inga edulis), ‘gallito’ (Diphysa americana), pine (Pinus chiapensis) and oak (Quercus).
ForageForage species are found mainly in milpa and coffee plantations. They are herbaceous plants that serve as food for cattle and chickens. Among them are grasses (Cyperus esculentus and Setaria parviflora).

Figure 9. 

Use of species from agroforestry systems.

Figure 10. 

Agroforestry systems of Las Delicias in San Juan Juquila Vijanos, Sierra Norte, Oaxaca, Mexico. A, B) Home gardens, C, D) Coffee plantations E, F) Milpa, (Photos: S. Pascual-Mendoza, G. Manzanero-Medina).

Similarity of floristic composition among agroforestry systems. There are 12 species shared among the three systems, all edible and the majority herbaceous (Table 3). They are generally short-cycle beans and squash.

The Sørensen index showed greater similarity between home gardens or coffee plantations in terms of the number of shared and exclusive species (Table 4).

Table 3. 

Species shared among the agroforestry systems of Las Delicias, Juquila Vijanos, Sierra Norte, Oaxaca.

FamilySpeciesCommon name
AmaranthaceaeAmaranthus hybridus L.Quintonil, cuan yösj
AnacardiaceaeMangifera indica L.Mango, yag mango
ApiaceaeEryngium foetidum L.Cilantro de espinas, culandr yötzi
AsteraceaeGalinsoga parviflora Cav.Quelite de piojito, cuan' béchi
CucurbitaceaeCucurbita ficifolia Bouché. Chilacayota, yutu uech
CucurbitaceaeCucurbita maxima Duchesne Tamala, yutu chuga
FabaceaePhaseolus coccineus L.Frijol grandote, za dupi
FabaceaePhaseolus sp.Frijol de enredadera de milpa, za ya'a
FabaceaePhaseolus sp.Frijol de cuarentena, za chua
PoaceaeZea mays L.Maíz, yöl
SolanaceaeCapsicum pubescens Ruiz & Pav.Chile marongo, guina'marongo
SolanaceaeCestrum nocturnum L.Huele de noche, cuan xu'u

Table 4. 

Floristic similarity among the agroforestry systems home gardens, coffee plantations and milpa.

Sites A-BSites A-CSites B-C
SitesHome gardens-Coffee plantationsHome gardens-MilpaCoffee plantations-Milpa
Sørensen index50.8123.0023.28

A total of 69 exclusive species were recorded in home gardens, mainly ornamental and food plants. In coffee plantations, 61 exclusive species were recorded, mostly trees used as shade and wild species used for food or medicinal purposes. The milpa system presented 10 exclusive species, mostly herbaceous species, such as ‘quelites’, and forage for cattle.

UV of plants in agroforestry systems. The species with the highest UV are trees. For example, the flowers of ‘gallito’ (Diphysa americana) are used as food (cooked with salt or fried with eggs). This tree can also be used as a hedgerow to delimit areas of cultivation and provide shade for coffee plantations, and the stem is used as firewood or for the construction of houses (Table 5). Species with lower UVs are those with more specific uses, such as medicinal plants.

Table 5. 

Species with the highest use value. AGS: Agroforestry systems: HG-Home Garden, C-Coffee plantation, M-Milpa. Uses: Ed-Edible, FW-Firewood, Sha-Shade, HR-Hedgerow, Med-Medicinal, Con-Construction, Orn-Ornamental. UV: Use Value Index.

KindredCommon nameName in ZapotecAGSUsesUV
Diphysa americana (Mill.) M. Sousa.GallitoYe'yechoCEd, FW Sha, HR, Con3.18
Prunus persica (L.) Batsch.DuraznoTrazHG, CEd, Med, FW, Sha, HR3.05
Psidium guajava L.Guayaba UyajHG, CEd, Med, FW, Sha2.52
Persea schiedeana Nees.Aguacate chupónXudu dxiCEd, Med2.11
Mangifera indica L.MangoYag mangoHG, C, MEd, FW, Sha, Con2.00
Alnus acuminata Kunth.Palo de águilaYag i'uiölCFW, Sha, HR, Con1.98
Erythrina americana Mill.Zompancle, colorínCuan btu tzuHG, CEd, FW, Sha, HR1.96
Citrus medica L.LimaGuiy xi'xHG, CEd, FW, Sha, Con1.93
Manilkara chicle (Pittier) Gilly.Zapote Lau gasi Lau qulCEd, FW, Sha, Con1.92
Inga jinicuil Schltdl.GuajinicuilYag yaj'tulHG, CEd, FW, Sha, Con1.91
Cestrum nocturnum L.Huele de nocheCuan xu'u HG, C, MEd, Med, Orn, HR1.90
Inga edulis Mart.Guajinicuil sombraYag yaj'tul guixi'CEd, FW, Sha, Con1.88

The Kruskal-Wallis test indicated that there are differences between agroforestry systems regarding the UV of species. In the post hoc test, coffee plantations exhibited the highest UV (Table 6) with many uses. Home gardens and milpa presented species with more specific purposes, such as ornamental or food purposes.

Table 6. 

Kruskal-Wallis test for use value among Agroforestry systems, as well as the post hoc analyses.

VariableAgroforestry systemsNMeanSt. DevMedianHP
UVCoffee plantations1381.780.871.3611.98< 0.001
UVHome gardens1471.570.841.00
UVMilpa381.260.721.00
SystemsRange
Milpa123.22A
Home garden155.73A
Coffee plantation179.35B

Means with common letters are not significantly different (p > 0.05).

Sociodemographic factors and traditional knowledge. The data obtained from the interviews are summarized in Table 7 where the factors Gender, age and economic activity are shown. The results of the generalized linear model showed that gender (χ2 (1,30) = 12.258, p < 0.0001), and economic activity (χ2 (1,30) = 7.263, p = 0.007), significantly influence the distribution of knowledge within the community. It was also observed that only the interactions between gender and schooling (Gender × Schooling) and between Economic Activity and Age (Economic activity × Age), were statistically significant with values of χ2 (1.30) = 8.953, p = 0.003 and χ2 (1.30) = 7.463, p = 0.006. (Table 8).

Table 7. 

Mentioned plant species and sociodemographic data (gender, age and economic activity).

GenderAgeEconomic activityNumber of species mentioned
Minimum Maximun MeanStandard error
Women55.57Primary7213395.429.466
42.13Tertiary65 109 83.875.745
Men 59.73 Primary 62 103 78.45 3.47
35.25Tertiary 639888.258.439

Table 8. 

Influence of sociodemographic factors on the distribution of traditional knowledge in the community.

SourceWald Chi-squareddfSig.
Intersecction614.9251< 0.0001
Gender12.2581< 0.0001
Economic activity7.26310.007
Age1.68410.194
Language0.12810.868
Schooling0.50610.477
Gender × Economic activity0.01410.906
Gender × Schooling8.95310.003
Economic activity × Age7.46310.006

Sum of squared Type III.

Discussion

Traditional knowledge of plants in agroforestry systems. In the Las Delicias Zapotec community, families have different agroforestry systems. In these, 85 % of Zapotec names were recorded for different plant species, which is higher in comparison to other Zapotec communities in the Sierra Madre del Sur, where up to 67 % of names in Zapotec have been recorded (Luna-José & Rendón-Aguilar 2012). This reflects the degree of conservation and use of the indigenous language in the community. For example, squash is called yutu, but there are specific names that describe particular physical characteristics: yutu uech means thin squash and is also known as ‘chilacayota’ (Cucurbita ficifolia); yutu chuga means squash with solid-looking skin (Cucurbita maxima); yutu bela describes fleshy squash whose skin is thin (Cucurbita pepo); and yutu nicachi alludes to the long form of squash (Cucurbita argyrosperma). This classification is similar to that reported in the chinantec milpa of Oaxaca, where the determinant characteristics of four variants of squash were hardness of the skin and shape of the fruit (Mateos-Maces et al. 2016).

Home gardens, coffee plantations and milpa are the main agroforestry systems in this Zapotec community and provide food, supplement the economic income of families and have an important role in bartering among the inhabitants. They also represent a strategy of adaptation to the environment because they show multiple management strategies for domesticated and wild resources, thus fulfilling a conservationist, resilient and sustainable function (Altieri & Toledo 2011). In this sense, the agroecological management practiced by farmers in the communities is fundamental for food sovereignty, which is why it has been recognized as an alternative and sustainable agriculture (Sámano-Rentería 2013).

Among the different types of agroforestry sytems, Mexico recognizes that home gardens are the most important for farmers because of their role in obtaining food (Boege 2008), while coffee plantations are the most important in terms of conservation, such as Chinantec coffee plantations (Bandeira et al. 2005) and those of Veracruz (Cerdán et al. 2012) and Chiapas (Valencia et al. 2014). In the Las Delicias community, coffee plantations play an important role in the economic activities of families because coffee cultivation represents an important subsistence strategy, which has been observed in other regions of Mexico, such as Los Tuxtlas in Chiapas (Castillo et al. 2014), and in other countries, such as El Salvador (Olson et al. 2012) and Puerto Rico (Borkhataria et al. 2012).

Particularly for milpa, the peasants of Las Delicias classify the land according to altitude and climate, in which the ‘tierra fría’ (cold land) is found at higher elevations with pine, oak and cloud forest and the ‘tierra caliente’ (hot land) is found at lower elevations. This classification is also used in other communities, such as the Zapotec and Chinantec in Oaxaca and Purépecha from Michoacan, whose classification of the territory is related to the productive cycle and soil quality (Mateos-Maces et al. 2016, Pérez-García & Del Castillo 2016, Pulido & Bocco 2016). As well as that of the ekuaro system in the same region (Franco-Gaona et al. 2016). It should be emphasized that the classification of the agroecosystem milpa of Las Delicias is very similar to that of the communities of Coyomeapan in the state of Puebla, and San Lorenzo Pápalo and Santa María Ixcatlán in the state of Oaxaca, which are inhabited by Nahuatl, Cuicatecos and ixcatecos, respectively, where this system is classified as highland cultivation of the region where the vegetation includes different types of association of pine, oak and pine-oak, and lowland commonly combining corn, beans and pumpkins with other crops (Vallejo et al. 2014)

Diversity of species in agroforestry systems. Species richness in Las Delicias home gardens is high (159) compared to that reported in other Mexican communities (García-Flores et al. 2019), in other countries such as Perú (Coomes & Ban 2004) and Argentina (Eyssartier et al. 2011), and in Asia (Mekonen et al. 2015). The majority of species in home gardens are selected by the owners for their reproduction and availability throughout the year (Manzanero-Medina et al. 2009). Despite the high species richness in this agroforestry, a little more than half (53 %) corresponds to introduced plants, which has been observed in other Zapotec home gardens (Gómez-Luna et al. 2017).

The number of useful species found in coffee plantations (148) is also considered high because it is higher than that reported for an Otomí community in Hidalgo (Acosta-Tolentino 2009). Although the most frequent life-form in the three agroforestry systems is herbaceous plants, the presence of trees was higher in coffee plantations. The abundance of trees in coffee plantations has also been reported in the Sierra Norte de Puebla and La Chinantla in Oaxaca, where they are used for food, medicine, firewood and construction wood (Martínez et al. 2007, Bandeira et al. 2005). Unlike home gardens, coffee plantations conserve a considerable number of wild species, which demonstrates the importance of this agroforestry system in the conservation and use of native biodiversity (Valencia et al. 2014).

For milpa, the number of species (41) was also high compared to a Chinantec village in the state of Oaxaca, where 26 species were recorded (Mateos-Maces et al. 2016).

The floristic composition of coffee plantations and milpa is approximately 70 % native plants, a characteristic that they share with this type of agroforestry system in countries such as Brazil (Souza et al. 2012) and Puerto Rico (Borkhataria et al. 2012). Based on the above, it can be suggested that the agrobiodiversity associated with agroforestry systems in the Las Delicias community is high, which is due to planting various crops for food, ornamental, and medicinal purposes, among others (Thrupp 2004).

Similarity of floristic composition among agroforestry systems. The 12 plant species that are present in the three agroforestry systems were mostly herbaceous, and the presence of those used as food, such as maize, beans and chili, is noteworthy. This not only demonstrates that these species are key components of agrobiodiversity in this community but also reflects their importance in the diet of Mexicans (Mateos-Maces et al. 2016, Salazar et al. 2016). Our results indicate that the agroforestry systems of this Zapotec community follow strategies based on the management of biodiversity. In this context, Olson et al. (2012) highlight the importance of agricultural matrices for the subsistence of farmers and the maintenance of different species. Thus, in the Las Delicias community, edible and ornamental plants are obtained from home gardens, trees for firewood and construction are obtained from coffee plantations, and basic food resources such as maize, beans and squash are obtained from milpa.

Use value of plants in agroforestry systems. Plants with higher UVs are found in coffee plantations and correspond to species with more than three categories of use, mainly plants for which the same part is used in different ways. In this regard, in the coffee plantations, a greater presence of trees was reported, for which different uses such as wood, fuel and construction were recorded. This variety of uses has been recorded in other studies, in which a high UV has been reported for woody plants (Lucena et al. 2007, Kwetche et al. 2012). Additionally, the presence of trees of different species in Las Delicias, mainly fruit and timber species, contributes to the highest UVs in this type of agroforestry system compared to home gardens and milpa (Acosta-Tolentino 2009).

Notably, quantitative approaches, such as those performed in this study, allow us to know the statistical support of the close relationship between the ecological aspect and the UV of plants (Tomazini et al. 2016). Thus, the UV not only allows the identification of the most well-known and utilized species in a community but also quantifies the traditional knowledge (Amusa et al.2012, Lucena et al. 2013).

Sociodemographic factors and traditional knowledge. In the Las Delicias community, gender and economic activity were the factors that had the greatest effect on the distribution of traditional knowledge that people possess in relation to plants. Manzanero-Medina et al. (2009) and Vásquez-Dávila & Manzanero-Medina (2015) note that activities in home gardens are carried out mainly by women. They decide which plants will be incorporated into the garden and know the edible plants used in cooking, such as condiments and vegetables, as well as those used in home medicine. Similarly, in the Zapotec families of the Isthmus and Sierra Sur, women have greater influence on decisions regarding agricultural spaces for food and economic purposes, while the rest of the family members participate to a lesser degree in the care and maintenance of agroecosystems (Velasco-Morales et al. 2001, Zurita-Vásquez 2012et al. 2019).

However, economic activity was significantly associated with the number of plants mentioned. In the Las Delicias community, people with an economic activity other than field activities (e.g. masonry, merchants or teachers) were those who mentioned fewer plants, while those who carried out agricultural and gathering activities in forests or agroecosystems showed greater traditional knowledge about the use of plants and the management of ecosystems. This shows that occupational activities other than agricultural activities are negatively related to ethnobotanical knowledge, which has also been reported for the Zapotecs of the Isthmus of Tehuantepec (Saynes-Vásquez et al. 2013). Thus, we can suggest that the existence and permanence of agroforestry systems are directly related to traditional knowledge.

On the other hand, the interaction between gender and schooling could be interpreted as that schooling is not the same between genders. In this regard it was observed that among men there is a smaller number of people who attended primary school while in women the pattern is reversed; although among the women, none attended the baccalaureate. In the interaction between economic activity and age, it would indicate that in primary economic activity we find a greater number of people over the age of fifty, while in tertiary activity this pattern is reversed.

In addition to the benefits provided by agroforestry systems in the Las Delicias community (for example, food, medicine, and firewood, among others), they also contribute to the conservation of the associated diversity because people perform “ex situ” conservation of species that are brought from the forest or “in situ” conservation of native, tolerant or promoted species as well as varieties of squash, chilis, beans and plantains. Even when the UV results reflect the degree of use of many plant species, this does not compromise the availability or permanence of their populations, as these are highly abundant species with a wide distribution, which is why they are not listed in any risk category (Lucena et al. 2007, Amusa et al. 2012).

Finally, agroforestry systems play an important role in the economic activities of the community and in the conservation of biodiversity. However, as communities begin to participate in the global market economy, their system of resource management tends to change, which in turn causes the loss of biodiversity in these systems (Vásquez-Dávila & Lope-Alzina 2012). Therefore, the need to incorporate traditional knowledge of indigenous communities into public policies is evident, as they are the basis for guaranteeing food sovereignty and biodiversity conservation.

 

Aknowledgments

To the families of the community of Las Delicias, Juquila Vijanos for allowing us to work with them, giving us the time to do the tours and interviews. A special thanks to the citizen Noé Pascual Yescas who collaborated with the translation and writing of the names in Zapotec. We thank Dr. Alejandro Flores-Manzanero for the revision of the manuscript and his valuable comments. SPM thanks the CONACYT for the 8987298 scholarship granted to carry out the Master's studies and the Project “Ethnobotany and nutritional potential of quelites present in the markets of Zaachila and Zimatlán, Oaxaca” key: SIP20170715. GIMM thanks the scholarships of the COFAA and EDI of IPN.

 

Supplemental data

Supplemental material for this article can be accessed here: https://doi.org/10.17129/botsci.2423

 

 

Literature cited

Abdoellah OS, Hadikusumah HY, Takeuchi K, Okubo S, Parikesit. 2006. Commercialization of homegardens in an Indonesian village: vegetation composition and functional changes. Agroforestry Systems 68: 1-13. DOI: https://doi.org/10.1007/s10457-005-7475-x

Acosta-Tolentino A. 2009. Estudio Florístico y etnobotánico de milpas y cafetales en San Antonio el Grande (Huehuetla, Hidalgo) y su relación con algunos factores socioeconómicos. BSc. Thesis, Universidad Autónoma del Estado de Hidalgo.

Agresti A, Finlay B. 2009. Statistical Methods for the Social Sciences. New Jersey: Pearson Prentice Hall. ISBN-10: 013450710X

Agresti A. 2002. Categorical Data Analysis. New Jersey: John Wiley and Sons, Inc. ISBN 978-0-471-22618-5

Albuquerque UP, da Cunha LVFC, de Lucena RFP, Alves RRN. 2014. Methods and Techniques in Ethnobiology and Ethnoecology. New York: Springer. DOI: https://doi.org/10.1007/978-1-4614-8636-7; ISBN-13: 978-1461486350

Altieri M, Toledo VM. 2011. The agroecological revolution of Latin America: rescuing nature, securing food sovereignity and empowering peasants. The Journal of Peasant Studies 38: 587-612. DOI: https://doi.org/10.1080/03066150.2011.582947

Amusa TO, Jimoh SO, Azeez IO. 2012. Determining the local importance of non-timber forest products using two different prioritization techniques. International Journal of Africulture and Forestry 2: 84-92. DOI: https://doi.org/10.5923/j.ijaf.20120201.14

Andriamparany JN, Brinkmann K, Jeannoda V, Buerket A. 2014. Effects of socio-economic household characteristics on traditional knowledge and usage of wild yams and medicinal plants in the Mahafaly region of south-western Madagascar. Journal of Ethnobiology and Ethnomedicine 10: 82. DOI: https://doi.org/10.1186/1746-4269-10-82

Arriaga-Cabrera L. 2009. Regiones prioritarias y planeación para la conservación de la biodiversidad. In: CONABIO, ed. Capital Natural de México, vol. II : Estado de Conservación y Tendencias de Cambio. México, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, pp. 433-457. ISBN: 978-607-7607-08-3

Bandeira FP, Martorell C, Meave J, Caballero J. 2005. The role of rustic coffee plantations in the conservation of wild tree diversity in the Chinantec region of Mexico. Biodiversity and Conservation 14: 1225-1240. DOI: https://doi.org/10.1007/s10531-004-7843-2

Bene JG, Beall HW, Côté A. 1977. Trees, food and people: land management in the tropics. Canada, Ottawa: International Development Research Centre. ISBN 10: 0-88936-121-5; ISBN-13: 978-0889361218

Beltrán-Rodríguez L, Ortiz-Sánchez A, Mariano NA, Maldonado-Almanza B, Reyes-García V. 2014. Factors affecting ethnobotanical knowledge in a mestizo community of the Sierra de Huautla Biosphere Reserve, Mexico. Journal of Ethnobiology and Ethnomedicine 10: 14. DOI: https://doi.org/10.1186/1746-4269-10-14

Bhagwat SA, Willis KJ, Birks JB, Whittaker RJ. 2008. Agroforestry: a refuge for tropical biodiversity?. Trends in Ecology and Evolution 23: 261-267. DOI: https://doi.org/10.1016/j.tree.2008.01.005

Boafo YA, Saito O, Kato S, Kamiyama C, Tkeuchi K, Nakahara M. 2016. The role of traditional ecological knowledge in ecosystem services management: the case of four rural communities in Northern Ghana. International Journal of Biodiversity Science, Ecosystem Services and Management 12: 24-38. DOI: https://doi.org/10.1080/21513732.2015.1124454

Boege SE. 2008. El patrimonio biocultural de los pueblos indígenas de México. Hacia la conservación in situ de la biodiversidad y agrodiversidad en los territorios indígenas. México, DF: Instituto Nacional de Antropología e Historia, Comisión Nacional para el Desarrollo de los Pueblos Indígenas. ISBN: 978-968-03-0385-4

Borkhataria R, Collazo J, Groom MJ, Jordan-García A. 2012. Shade-grown coffee in Puerto Rico: Opportunities to preserve biodiversity while reinvigorating a struggling agricultural commodity. Agriculture, Ecosystems and Enviroment 149: 164-170. DOI: https://doi.org/10.1016/j.agee.2010.12.023

Castillo CG, Ávila-Bello CH, López-Mata L, León GF. 2014. Structure and tree diversity in traditional popoluca coffee agroecosystems in the Los Tuxtlas biosphere reserve, Mexico. Interciencia 39: 608-619.

Cerdán CR, Rebolledo MC, Soto G, Rapidel B, Sinclair FL. 2012. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agricultural Systems 110: 119-130. DOI: https://doi.org/10.1016/j.agsy.2012.03.014

Conover WJ. 1999. Practical Nonparametric Statistics. New York: John Wiley and Sons, Inc. ISBN-10: 0471160687; ISBN-13: 978-0471160687

Coomes OT, Ban N. 2004. Cultivated plant species diversity in home gardens of an Amazonian peasant village in Northeastern Perú. Economic Botany 58: 420-434. DOI: https://doi.org/10.1663/0013-0001(2004)058[0420:CPSDIH]2.0.CO;2

De Clerck FAJ, Negreros-Castillo P. 2000. Plants species of traditional Mayan home gardens of Mexico as analogs for multistrata agroforests. Agroforestry Systems 48: 303-317. DOI: https://doi.org/10.1023/A:1006322612362

Del Castillo RF, Blanco-Macías A. 2007. Secondary succession under slash and burn regime in a tropical montane cloud forest: soil and vegetation characteristics. In: Newton AC, ed. Biodiversity Loss and Conservation in Fragmented Forest Landscapes: Evidence from the Forests of Montane Mexico and Temperate South America. Wallingford, UK: CAB International, pp. 158-180. DOI: https://doi.org/10.1079/9781845932619.0158

De Wet JMJ, Harlan JR. 1975. Weeds and domesticates: evolution in the man-made habitat. Economic Botany 29: 99-107. DOI: https://doi.org/10.1007/BF02863309

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. 2008. InfoStat v 2008. < http://www.infostat.com.ar/ > (accessed October 18, 2018).

Eyssartier C, Ladio A, Lozada M. 2011. Traditional horticultural knowledge change in a rural population of the Patagonian steppe. Journal of Arid Enviroments 75: 78-86. DOI: https://doi.org/10.1016/j.jaridenv.2010.09.006

Franco-Gaona A, Ramírez-Valverde B, Cruz-León A, Sangerman-Jarquín DM, Ramírez-Valverde G. 2016. El ekuaro: un sistema agroforestal tradicional michoacano. Revista Mexicana de Ciencias Agrícolas 16: 3357-3370. DOI:https://doi.org/10.29312/remexca.v0i16.401

García-Flores JC, Gutiérrez-Cedillo JG, Araújo-Santana MR. 2019. Factores sociales explicativos de la riqueza vegetal en huertos familiares: análisis de una estrategia de vida. Sociedad y Ambiente 19: 242-264. DOI: https://doi.org/10.31840/sya.v0i19.1931

Gómez-Luna RE, Manzanero-Medina GI, Vásquez-Dávila MA. 2017. Florística y aspectos sociales de huertas zapotecas en Lachatao, Sierra Norte de Oaxaca, México. Revista Bio Ciencias 4:1-15. DOI: https://doi.org/10.15741/revbio.04.04.03

González RJ. 2001. Zapotec Science: Farming and Food in the Northern Sierra of Oaxaca. Texas: University of Texas Press. ISBN-13:978-0292728325

Harvey CA, González-Villalobos JA. 2007. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodiversity and Conservation 16: 2257-2292. DOI: https://doi.org/10.1007/s10531-007-9194-2

Hershberger SL. 2005. Type I, Type II and Type III Sums of Squares. In: Everitt BS. & Howell DC, eds. Encyclopedia of Statistics in Behavioral Science. Chichester: John Wiley & Sons. ISBN-10 0-470-86080-4; ISBN-13: 978-0470860809

IBM. 2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.

INEGI [Instituto Nacional de Estadística y Geografía]. 2005. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. San Juan Juquila Vijanos, Oaxaca. Clave geoestadística 202001. México: INEGI.

Kunwar RM, Baral K, Paudel P, Acharya RP, Thapa-Magar KB, Cameron M, Bussmann RW. 2016. Land-Use and Socioeconomic Change, Medicinal Plant Selection and Biodiversity Resilience in Far Western Nepal. PLOS ONE 11: e0169447. DOI: https://doi.org/10.1371/journal.pone.0167812

Kunwar RM, Fadiman M, Cameron M, Bussmann RW, Thapa-Magar KB, Rimal B, Sapkota P. 2018. Cross-cultural comparison of plant use knowledge in Baitadi and Darchula districts, Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine 14: 40. DOI: https://doi.org/10.1186/s13002-018-0242-7

Kwetche T, Oldeland J, Bognounou F, Schmiedel U, Thiombiano A. 2012. Ethnobotanical knowledge and valuation of woody plants species: a comparative analysis of three ethnic groups from the sub-Sahel of Burkina Faso. Enviroment, Development and Sustainability 14: 627-649. DOI: https://doi.org/10.1007/s10668-012-9345-9

Laleye FOA, Mensah S, Assogbadjo AE, Ahissou H. 2015. Diversity, Knowledge, and Use of Plants in Traditional Treatment of Diabetes in the Republic of Benin. Ethnobotany Research and Applications 14: 231-257. DOI: https://doi.org/10.17348/era.14.0.231-257

Lopes LCM, Crepaldi MOS, Lobão AQ. 2017. Useful woody species and its environmental availability: the case of artisanal fishermen in Itaúnas, Brazil. Acta Scientiarum 39: 227-234. DOI: https://doi.org/10.4025/actascibiolsci.v39i2.33187

López-Forment IS. 1998. Changes in Diversity in the Process of Milpa Intensification in the Henequen Zone in Yucatan, Mexico. Chicago, USA: Latin American Studies Association.

Lucena RFP, Aráujo EL, Albuquerque UP. 2007. Does the local availability of Woody Caatinga plants (Northeastern Brazil) Explain their Use Value. Economic Botany 61: 347-361.

Lucena RFP, Lucena CM, Aráujo EL, Alves AGC, Albuquerque UP. 2013. Conservation priorities of useful plants from different techniques of collection and analysis of ethnobotanical data. Anais Da Academia Brasileira de Ciencias 85: 169-186. DOI: https://doi.org/10.1590/S0001-37652013005000013

Luna-José AL, Rendón-Aguilar B. 2012. Traditional knowledge among Zapotecs of Sierra Madre Del Sur, Oaxaca. Does it represent a base for plant resources management and conservation?. Journal of Ethnobiology and Ethnomedicine 8: 24. DOI: https://doi.org/10.1186/1746-4269-8-24

Manzanero-Medina GI, Flores-Martínez AF, Hunn ES. 2009. Los huertos familiares zapotecos de San Miguel Talea de Castro, Sierra Norte de Oaxaca, México. Etnobiología 7: 9-29.

Martínez MA, Evangelista V, Basurto F, Mendoza M, Cruz-Rivas A. 2007. Flora útil de los cafetales en la Sierra Norte de Puebla, México. Revista Mexicana de Biodiversidad 78: 15-40. DOI: http://dx.doi.org/10.22201/ib.20078706e.2007.001.457

Mateos-Maces L, Castillo-González F, Chávez-Servia JL, Estrada-Gómez JA, Livera-Muñoz M. 2016. Manejo y aprovechamiento de la agrobiodiversidad en el sistema milpa del sureste de México. Acta Agronómica 65: 413-421. DOI: https://doi.org/10.15446/acag.v65n4.50984

McCullagh P, Nelder JA. 1983. Generalized Linear Models. London: Chapman & Hall. ISBN 978-0-412-23850-5; ISBN 978-1-4899-3244-0

Mekonen T, Giday M, Kelbessa E. 2015. Ethnobotanical study of homegarden plants in Sebeta-Awas District of the Oromia Region of Ethiopia to assess use species diversity and management practices. Journal of Ethnobiology and Ethnomedicine 11: 64. DOI: https://doi.org/10.1186/s13002-015-0049-8

Mendenhall W, Beaver RJ, Beaver B. 2013. Introduction to Probability and Statistics. Boston: Brooks/Cole. ISBN-10: 1133103758; ISBN-13: 978-1133103752

Moguel P, Toledo VM. 1999. Biodiversity Conservation in Traditional Coffee Systems of Mexico. Conservation Biology 13: 11-21. DOI: https://doi.org/10.1046/j.1523-1739.1999.97153.x

Moreno CE. 2001. Métodos para medir la biodiversidad. México: M&T-Manuales y Tesis SEA. ISBN: 84-922495-2-8

Moreno-Calles AI, Casas A, Toledo VM, Vallejo-Ramos M. 2016. Etnoagroforestería en México. México: Universidad Nacional Autónoma de México. ISBN 978-607-01-8641-4

Moreno-Calles AI, Toledo VM, Casas A. 2013. Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Botanical Sciences 91: 375-398. DOI: https://doi.org/10.17129/botsci.419

Nader L. 1964. Talea and Juquila a comparison zapotec social organization. Berkley: University of California Press.

Nair PKR. 2011. Agroforestry Systems and Environmental Quality: Introduction. Journal of Environmental Quality 40: 784-90. DOI: https://doi.org/10.2134/jeq2011.0076

Olson MB, Morris KS, Méndez MVE. 2012. Cultivation of maize landraces by small-scale shade coffee farmers in western El Salvador. Agricultural Systems 111: 63-74. DOI: https://doi.org/10.1016/j.agsy.2012.05.005

Pérez-García O, Del Castillo RF. 2016. The decline of the itinerant milpa and the maintenance of traditional agrobiodiversity: Crops and weeds coexistence in a tropical cloud forest area in Oaxaca, Mexico. Agriculture, Ecosystems and Environment 228: 30-37. DOI: https://doi.org/10.1016/j.agee.2016.05.002

Phillips O, Gentry AH. 1993a. The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Economic Botany 47: 15-32. DOI: https://doi.org/10.1007/BF02862203

Phillips O, Gentry AH. 1993b. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Economic Botany 47: 33-43. DOI: https://doi.org/10.1007/BF02862204

Power AG. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of Royal Society 365: 2959-2971. DOI: https://doi.org/10.1098/rstb.2010.0143

Pulido SJ, Bocco VG. 2016. Conocimiento tradicional del paisaje en una comunidad indígena: caso de estudio en la región purépecha, occidente de México. Investigaciones Geográficas, Boletín 89: 41-57. DOI: http://dx.doi.org/10.14350/rig.46478.

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (accessed November 18, 2019)

Ribeiro JPO, Carvalho TKN, Ribeiro JES, Sousa RF, Lima JRF, Oliveira RS, Alvez CAB, Jardim JG, Lucena FP. 2014. Can ecological apparency explain the use of plant species in the semi-arid depression of Northeastern Brazil? Acta Botánica Brasilica 28: 476-483. DOI: https://doi.org/10.1590/0102-33062014abb2758

Rosset P, Altieri M. 2018. Agroecología Ciencia y Política. Ecuador: Sociedad Científica Latinoamericana de Agroecología SOCLA.

Salazar C, Zizumbo-Villareal D, Colunga-GarcíaMarín P, Brush S. 2016. Contemporary Maya Food System in the Lowlands of Northern Yucatan. In: Lira R, Casas A, Blancas J, eds. Ethnobotany of Mexico. Interactions of people and Plants in Mesoamerica. New York: Springer Science and Business Media, pp. 133-150. DOI: https://doi.org/10.1007/978-1-4614-6669-7_6

Sámano-Rentería MA. 2013. La agroecología como una alternativa de seguridad alimentaria para las comunidades indígenas. Revista Mexicana de Ciencias Agrícolas 4: 1251-1266.

Sarukhán J, Koleff P, Carabias J, Soberón J, Dirzo R, Llorente-Bousquets J, Halffter G, González R, March I, Anta S, de la Maza J. 2009. Capital Natural de México . Síntesis: conocimiento actual, evaluación y perspectivas de sustentabilidad. México, DF: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad . ISBN: 978-607-7607-09-0

Saynes-Vásquez A, Caballero J, Meave JA, Chiang F. 2013. Cultural change and loss of ethnoecological knowledge among the Isthmus Zapotecs of Mexico. Journal of Ethnobiology and Ethnomedicine 9: 40. DOI: https://doi.org/10.1186/1746-4269-9-40

Segnon AC, Achigan-Dako EG, Gaoue OG, Ahanchéde A. 2015. Farmer’s Knowledge and Perception of Diversified Farming Systems in Sub-Humid and Semi-Arid Areas in Benin. Sustainability 7: 6573-6592. DOI: https://doi.org/10.3390/su7066573

Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN. 2004. Agroforestry and Biodiversity Conservation in Tropical Landscapes. Washington, DC: Island Press. ISBN-10: 1559633565; ISBN-13: 978-1559633567

Shaheen H, Qureshi R, Qaseem MF. 2015. Qualitative investigation techniques used for análisis of ethnobotanical data from Thal Desert, Punjab Pakistan. Journal of Medicinal Plants Studies 3: 69-75.

Souto T, Ticktin T. 2012. Understanding Interrelationships among Predictors (Age, Gender, and Origin) of Local Ecological Knowledge. Economic Botany 66: 149-164. DOI: https://doi.org/10.1007/s12231-012-9194-3

Souza HN, Goede RGM, Brussaard L, Cardoso IM, Duarte EMG, Fernandes RBA, Gomes LC, Pulleman MM. 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems and Environment 146: 179-196. DOI: https://doi.org/10.1016/j.agee.2011.11.007

Steppler HA, Nair PKR. 1987. Agroforestry a decade of development. Kenya, Nairobi: International Council for Research in Agroforestry. ISBN 10: 92 9059 036 X; ISBN-13: 978-9290590361

Thomas E, Vandebroek I, Van Damme P. 2009. Valuation of Forests and Plant Species in Indigenous Territory and National Park Isiboro-Sécure, Bolivia. Economic Botany 63: 229-241. DOI: https://doi.org/10.1007/s12231-009-9084-5

Thrupp LA. 2004. The importance of biodiversity in agroecosystems. Journal of Crop Improvement 12: 315-337. DOI: https://doi.org/10.1300/J411v12n01_03

Tomazini C, Ferreira V, Shepard G, Heinrich M. 2016. Medicinal plants at Rio Jauaperi, Brazilian Amazon: Ethnobotanical survey and enviromental conservation. Journal of Ethnopharmacology 186: 111-124. DOI: https://doi.org/10.1016/j.jep.2016.03.055

La Torre-Cuadros MA, Islebe G. 2003. Traditional ecological knowledge and use of vegetation in southeastern Mexico: a case study from Solferino, Quintana Roo. Biodiversity and Conservation 12: 2455-2476. DOI: https://doi.org/10.1023/A:1025861014392

Valencia V, García-Barrios L, West P, Sterling EJ, Naeem S. 2014. The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agriculture, Ecosystems and Enviroment 189: 154-163. DOI: https://doi.org/10.1016/j.agee.2014.03.024

Vallejo M, Casas A, Blancas J, Moreno-Calles AI, Solís L, Rangel-Landa S, Dávila P, Téllez O. 2014. Agroforestry systems in the highlands of the Tehuacán Valley, Mexico: indigenous cultures and biodiversity conservation. Agroforestry Systems 88: 125-140. DOI: https://doi.org/10.1007/s10457-013-9660-7

Vásquez-Dávila MA, Lope-Alzina D. 2012. Manejo y conservación de la agrobiodiversidad y diversidad en huertos familiares indígenas de Oaxaca, México: un enfoque biocultural. In: Salvador-Flores J, ed. Los Huertos Familiares en Mesoamérica. México: Universidad Autónoma de Yucatán, pp. 280-308. ISBN: 978-607-00-6015-1.

Vásquez-Dávila MA, Manzanero-Medina GI. 2015. Campesinidad y socialización en las huertas familiares de las mujeres zapotecas de la sierra norte de Oaxaca, México. Negocios & Desarrollo 2: 92-117.

Velasco-Morales AV, Vásquez-Dávila MA, Cervantes Servín L. 2001. Género y manejo de los solares zapotecos de Tehuantepec, Oaxaca. IV Congreso Mexicano de Etnobiología . Huejutla de Reyes, Hidalgo. Memoria. Asociación Etnobiológica Mexicana. México.

Zurita-Vásquez GG. 2012. Estudio etnobotánico y ecológico de los huertos familiares de San Andrés Paxtlán, Miahutlán, Oaxaca. MSc. Thesis. Instituto Politécnico Nacional. Oaxaca, México.

Supplementary data 1.

List of plant species mentioned in the interviews. The species are ordered according to botanical families. Registration number in ascending order (No.); Species (Scientific Name); Family; Local Common name, names are in Spanish or Rincón Zapotec where indicated (Z); Agroforestry systems (AGS): H. F-Home gardens, C-Coffee plantations, M: Milpa; Use: 1-Food, 2-Medicinal, 3-Ornamental, 4-Firewood, 5-Shade, 6-Domestic use, 7-Live fence, 8-Construction, 9-Forage; VU: Use Value Index.

No.SpecieFamily

  • Common name

  • Local name, names are in Spanish or Zapotec where indicated (Z)

AGSUseVU
1Thunbergia alata Bojer ex Sims. Acanthaceae Flor amarilla, Yaj'lbá (Z) H. F 3 0.86
2Sambucus nigra L. subsp. canadensis (L.) Bolli Adoxaceae Yag la'bziá H. F, C 3,4 1.08
3Lampranthus spectabilis (Haw.) N.E. Br. Aizoaceae Dedo chico con flor morada H. F 3 0.67
4Mesembryanthemum cordifolium L.f. Aizoaceae Flores pequeñas rojas, Yaj len yú (Z) H. F 3 0.67
5Bomarea edulis (Tussac) Herb. Alstroemeriaceae Granadita, Yaj béca (Z) H. F, C 6 0.67
6Liquidambar styraciflua L. Altingiaceae Yavito, Ye'bído (Z) C 8, 6, 5 1.55
7Amaranthus hybridus L. Amaranthaceae Quintonil, Cuan yösj (Z) H. F, C, M 1 0.94
8Dysphania ambrosioides (L.) Mosyakin & Clemants Amaranthaceae Epazote, Böt (Z) H. F, M 1, 2 1.24
9Agapanthus praecox Willd. Amaryllidaceae Agapando, Yaj bech'dö (Z) H. F, C 3, 7 0.94
10Allium neapolitanum Cirillo. Amaryllidacea Cebollina, La'yö (Z) H. F 1 0.67
11Crinum erubescens Aiton Amaryllidaceae Yaj yöla guich (Z) H. F, C 3, 7 0.94
12Hippeastrum reginae (L.) Herb. Amaryllidaceae Azucena roja, Ducen gach (Z) H. F 3 0.83
13Mangifera indica L. Anacardiaceae Mango, Yag mango (Z) H. F, C, M 1, 8, 4, 5 2
14Spondias purpurea L. Anacardiaceae Ciruela, Yá'dxi (Z) H. F 1 0.85
15Annona cherimola Mill. Annonaceae Anona, La'gúchi (Z) C 1, 4, 5 1.53
16Annona muricata L. Annonaceae Guanábana, La'gúchi xtil (Z) H. F, C 1, 4, 5 1.6
17Eryngium foetidum L. Apiaceae Cilantro de espinas, Culandr yötzi (Z) H. F, C, M 1 0.87
18Coriandrum sativum L. Apiaceae Cilantro, Culandr xtil (Z) H. F, M 1 0.86
19Petroselinum crispum (Mill.) Fuss. Apiaceae Perejil H. F 1, 2 1
20Nerium oleander L. Apocynaceae Rosa de China, Yaj ros (Z) H. F 3 0.94
21Catharanthus roseus (L.) G. Don. Apocynaceae Flor morada, Yaj morado (Z) H. F 3 0.85
22Xanthosoma robustum Schott. Araceae Palma de agua, Cuyul dit (Z) H. F, C 3 0.71
23Zantedeschia aethiopica Spreng. Araceae Alcatraz o cartucho, Yaj cartuch (Z) H. F 3 0.67
24Anthurium sp. Araceae Anturio H. F, C 3 0.88
25Dieffenbachia seguine Schott Araceae Siempre verde H. F 3 0.85
26Spathiphyllum wallisii Regel. Araceae Cuna de moisés, Yaj (Z) H. F 3 0.93
27Monstera deliciosa Liebm. Araceae Planta de ornato, Yaj xilaba bxi'tzu (Z) H. F 3 0.85
28Dendropanax arboreus (L.) Decne. & Planch. Araliaceae Árbol de frutos rojos, Ye'buga (Z) C 4, 7, 5 1.47
29Chamaedorea oreophila Mart. Arecaceae Tepejilote, Yötzu (Z) C 1 0.67
30Cordyline fruticosa (L.) A. Chev. Asparagaceae Planta de ornato H. F 3 0.71
31Dracaena fragrans Ker Gawl. Asparagaceae Arbusto verde H. F 3 0.67
32Polianthes tuberosa L. Asparagaceae Azucena nardo, Ducen nardo (Z) M 3 0.85
33Yucca guatemalensis Baker Asparagaceae Flor de Izote, Yag yódj (Z) H. F, C 3,7 1
34Artemisia absinthium L. Asteraceae Yerba maestra, Cuan'bés (Z) H. F 2 0.94
35Ageratum corymbosum Zuccagni Asteraceae Flor esponjada morada, Yaj lugudza (Z) C 3 0.86
36Aster amellus L. Asteraceae Flor morada H. F 3 0.67
37Baccharis trinervis Pers. Asteraceae Hierba de flores blancas, Yaj tu'sando (Z) C 3, 7 1.19
38Bidens odorata Cav. Asteraceae Guixi' zía (Z) C 9 0.71
39Matricaria recutita L. Asteraceae Manzanilla H. F 2 0.9
40Dahlia coccinea Cav. Asteraceae Dalia silvestre, Yaj dalia guixi' (Z) C 3 0.88
41Dahlia tenuicaulis P.D. Sorensen Asteraceae Dalia silvestre, Yaj dalia guixi' (Z) C 3 0.91
42Erechtites valerianifolius (Link ex Spreng.) DC. Asteraceae Quelite, Cuan guiti (Z) H. F, C 1 0.67
43Galinsoga parviflora Cav. Asteraceae Quelite de piojito Cuan 'béchi (Z) H. F, C, M 1 0.91
44Pseudognaphalium viscosum (Kunth) Anderb. Asteraceae Gordolobo C 2 0.91
45Helianthus annuus L. Asteraceae Girasol, mirasol, Yaj uíchj xtil (Z) H. F 3 0.93
46Xerochrysum bracteatum (Vent.) Tzvelev Asteraceae Flor doradita, Yaj uíchj (Z) H. F 3 0.85
47Heliopsis buphthalmoides (Jacq.) Dunal Asteraceae Guixi' (Z) H. F, M 3 0.67
48Lactuca sativa L. Asteraceae Lechuga H. F 1 0.85
49Leucanthemum vulgare Lam. Asteraceae Margarita H. F 3 1
50Melampodium perfoliatum (Cav.) Kunth Asteraceae Guixi' (Z) C, M 9 0.67
51Mikania pyramidata Donn. Sm. Asteraceae Flor de hojas blancas, Yaj xi'ila (Z) C 6 0.87
52Tanacetum parthenium (L.) Sch.Bip. Asteraceae Santa María H. F 2, 3 1.2
53Taraxacum officinale F.H. Wigg. Asteraceae Diente de león Guixi' (Z) C 9 0.88
54Tithonia diversifolia (Hemsl.) A. Gray. Asteraceae Árnica H. F, C 2 0.93
55Zinnia peruviana (L.) L. Asteraceae Yaj Uzeb (Z) H. F 3 0.94
56Impatiens walleriana Hook.f. Balsaminaceae Hierba H. F 3 0.93
57Begonia heracleifolia Cham. & Schltdl. Begoniaceae Begonia, Yaj rla ra'yego (Z) H. F, C 3 0.85
58Alnus acuminata Kunth. Betulaceae Palo de águila, Yag i'uiöl (Z) C 8, 4, 7, 5 1.98
59Jacaranda mimosifolia D. Don. Bignoniaceae Jacaranda, Yag jacaránd (Z) H. F, C 3, 5 1.19
60Brassica oleracea L. Brassicaceae Col, Col'xö (Z) H. F 1 0.86
61Brassica rapa L. Brassicaceae Mostaza, Mor'táz (Z) H. F 1 0.67
62Lepidium virginicum L. Brassicaceae Guixi' (Z) C 9 0.87
63Nasturtium officinale W.T. Aiton Brassicaceae Berros, Cuan' berro (Z) C 1 0.9
64Raphanus raphanistrum subsp. sativus (L.) Domin. Brassicaceae Rábano H. F 1 0.91
65Ananas comosus (L.) Merr. Bromeliaceae Piña, Dúa (Z) H. F, C 1 0.94
66Catopsis sessiliflora (Ruiz & Pav.) Mez. Bromeliaceae Bromelia, Yaj bná (Z) C 3 0.86
67Tillandsia imperialis E. Morren ex Roezl. Bromeliaceae Bromelia, Yaj bná (Z) C 3 0.91
68Tillandsia macdougallii L.B.Sm. Bromeliaceae Bromelia, Yaj bná (Z) H. F, C 3 0.77
69Opuntia auberi Pfeiff. Cactaceae Nopa de lengua, Bía xtil (Z) H. F, C 1, 2 1.18
70Opuntia ficus-indica (L.) Mill. Cactaceae Nopal delgado, Bía láz (Z) H. F, C 1, 7 1
71Opuntia sp. Cactaceae Nopal de tortilla, Bía yöt (Z) H. F, C 1 0.76
72Lobelia laxiflora Kunth. Campalunaceae Hierba de conejo Guidxi nidxi (Z) C 1 0.86
73Trema micranthum (L.) Blume. Cannabaceae Palo blanco, Cuan za ye'go (Z) C 4, 7, 5 1
74Cleoserrata speciosa (Raf.) Iltis Capparaceae Frijol del río, Cuan za yego (Z) C 2, 3 1.05
75Carica papaya L. Caricaceae Papaya H. F, C 1 0.92
76Clethra mexicana DC. Clethraceae Árbol de flores blancas, Yag yedau (Z) C 3, 4, 5 1.39
77Terminalia amazonia Excell in Pulle Combretaceae Árbol, Ijérg (Z) C 4, 7, 5 1.6
78Commelina coelestis Willd. Commelinaceae Hierba, Betzu'dú (Z) M 1 0.73
79Ipomoea batatas (L.) Lam. Convolvulaceae Camote dulce Ula'rö'ö lila (Z) H. F, C 1 0.67
80Ipomoea purpurea (L.) Roth Convolvulaceae Quiebra plato, Ula rö'ö (Z) H. F 3 0.76
81Bryophyllum pinnatum (Lam.) Oken Crassulaceae Planta que truena H. F, C 3 0.67
82Echeveria gigantea Rose & J.A. Purpus Crassulaceae Ombligo, Yaj'bía (Z) H. F 3 0.86
83Kalanchoe blossfeldiana Poelln. Crassulaceae Planta ornato H. F 3 0.93
84Sedum morganianum E. Walther. Crassulaceae Cola de borrego, Shbamba'bucu shila (Z) H. F 3 0.78
85Cucurbita argyrosperma C. Huber Cucurbitaceae Calabaza alargada, Yutu nicachi (Z) H. F, M 1 0.8
86Cucurbita ficifolia Bouché Cucurbitaceae Chilacayota, Yutu uech (Z) H. F, C, M 1 0.91
87Cucurbita maxima Duchesne Cucurbitaceae Tamala, Yutu chuga (Z) H. F, C, M 1 0.86
88Cucurbita moschata Duchesne Cucurbitaceae Calabaza,Yutu yag H. F, M 1 0.67
89Cucurbita pepo L. Cucurbitaceae Calabaza cáscara delgada H. F, M 1 0.93
Yutu bela (Z)
90Lagenaria siceraria (Molina) Standl. Cucurbitaceae Bule M 6 0.76
91Sechium edule Sw. var 1 Cucurbitaceae Chayote verde con espinas, Cuan'yötzi H. F, C 1 0.85
92Sechium edule Sw. var 2 Cucurbitaceae Chayote verde sin espinas H. F, C 1 0.86
93Sechium edule Sw. var 3 Cucurbitaceae Chayote verde limón con espinas H. F, C 1 0.83
94Sechium edule Sw. var 4 Cucurbitaceae Chayote verde limón sin espinas H. F, C 1 0.72
95Sechium edule Sw. var 5 Cucurbitaceae Chayote blanco grande con espinas H. F, C 1 0.89
96Sechium edule Sw. var 6 Cucurbitaceae Chayote blanco grande liso H. F, C 1 0.76
97Cyperus esculentusL. Cyperaceae Hierba para animales M 9 0.79
98Pteridium aquilinum (L.) Kuhn. Dennstaedtiaceae Copetate, Güi ya (Z) H. F, C 3 0.67
99Dryopteris filix-mas (L.) Schott. Dryopteridaceae Helecho pequeño C 2 0.85
100Diospyros nigra (J. F. Gmel.) Perr & Perr, Ebenaceae Zapote negro, Lau gasi (Z) C 1, 4, 5 1.3
101Acalypha subviscida S. Watson Euphorbiaceae Hierba roja para diarrea, Cuan guidz gach (Z) C 2 0.9
102Codiaeum variegatum (L.) Rumph. ex A. Juss. Euphorbiaceae Corona de Cristo H. F 3 0.87
103Croton draco Schltdl. Euphorbiaceae Palo blanco, Ye guidi ya'a (Z) C 4,7, 5 1.7
104Euphorbia milii Des Moul. Euphorbiaceae Planta de ornato H. F 3 0.85
105Euphorbia pulcherrima Willd. ex Klotzsch. Euphorbiaceae Noche buena H. F 3 0.9
106Ricinus communis L. Euphorbiaceae Higuerilla C 2 0.93
107Crotalaria longirostrata Hook. & Arn. Fabaceae Chepil H. F 1 0.92
108Diphysa americana (Mill.) M.Sousa. Fabaceae Gallito, Ye'yecho (Z) C 1, 8, 4, 7, 5 3.18
109Erythrina americana Mill. Fabaceae Zompancle, colorín Cuan btu tzu (Z) H. F, C 1, 4, 7, 5 1.96
110Inga edulis Mart. Fabaceae Guajinicuil sombra Yag yaj'tul guixi' (Z) C 1, 8, 4, 5 1.89
111Inga jinicuil Schltdl. Fabaceae Guajinicuil, Yag yaj'tul (Z) H. F, C 1, 8, 4, 5 1.91
112Leucaena leucocephala (Lam.) de Wit Fabaceae Guaje, La'bada (Z) H. F, C 1, 4, 7, 5 1.89
113Mimosa pudica L. Fabaceae Vergonzosa, Yötzi rutúi (Z) C 6 1.4
114Phaseolus coccineus L. var 1 Fabaceae Frijolones, Za laya (Z) H. F, M 1 0.73
115Phaseolus coccineus L.var 2 Fabaceae Frijol grandote, Za dupi (Z) H. F, C, M 1 0.88
116Phaseolus vulgaris L var 1 Fabaceae Frijol delgado, Za laz (Z) C, M 1 0.89
117Phaseolus vulgaris L. var 2 Fabaceae Enredadera de milpa, Za ya'a (Z) H. F, C, M 1 0.9
118Phaseolus vulgaris L. var 3 Fabaceae Frijol de cuarentena Za chua (Z) H. F, C, M 1 0.84
119Pisum sativum L. Fabaceae Chícharos, Za'lberj (Z) H. F 1 0.88
120Tamarindus indica L. Fabaceae Tamarindo H. F 3 0.81
121Vicia faba L. Fabaceae Habas, Za'rab (Z) H. F 1 0.92
122Quercus sp. Fagaceae Encino blanco, Ye zuga tchi'ch (Z) C 8, 4, 5 1.69
123Quercus sp. Fagaceae Encino rojo, Yezuga gach (Z) C 2, 8, 4, 5 1.86
124Pelargonium x hortorum L.H. Bailey Geraniaceae Geranio H. F 3 0.94
125Hydrangea macrophylla (Thunb.) Ser. Hydrangeaceae Ortencia, Yaj bdxi'ch (Z) H. F 3 0.79
126Vismia baccifera (L.) Planch. & Triana Hypericaceae Gancho lucero C 4, 5 1.17
127Crocosmia × crocosmiiflora (Lemoine) N.E.Br. Iridaceae Gladiola montés, Yaj bar (Z) H. F, M 3 0.73
128Gladiolus grandiflorus Andrews var 1 Iridaceae Gladiola guinda, Yaj bar xná (Z) M 3 0.85
129Gladiolus grandiflorus Andrews var 2 Iridaceae Gladiola blanca, Yaj bar chquich (Z) C, M 3 0.77
130Gladiolus grandiflorus Andrews var 3 Iridaceae Gladiola roja, Yaj bar gach (Z) M 3 0.9
131Gladiolus grandiflorus Andrews var 4 Iridaceae Gladiola amarilla Yaj bar gulj (Z) H. F, M 3 0.87
132Gladiolus grandiflorus Andrews var 5 Iridaceae Gladiola rosa, Yaj bar ros (Z) H. F, M 3 0.82
133Hyptis atrorubens Poit. Lamiaceae Xhuiaj guixi' (Z) M 9 0.89
134Mentha spicata L. Lamiaceae Hierbabuena, Xhuiaj bela (Z) H. F 1, 2 1.21
135Origanum vulgare L. Lamiaceae Orégano H. F 1 0.67
136Plectranthus scutellarioides (L.) R.Br. Lamiaceae Yaj laga guixi' (Z) H. F 3 0.81
137Salvia lasiocephala Hook. & Arn. Lamiaceae Hierba de flores azules, Guixi' (Z) C 3 0.72
138Satureja macrostema var. laevigata (Standl.) McVaugh & R. Schmid Lamiaceae Poleo, Xhuiaj zö (Z) H. F 1, 2 1.05
139Persea americana Mill. var 1 Lauraceae Aguacate de bola cáscara maciza, Xúga chúga (Z) C, M 1, 2, 4, 5 1.89
140Persea americana Mill. var 2 Lauraceae Aguacate de bola de cáscara delgada, Xúga bela (Z) C, M 1, 2, 4, 5 1.67
141Persea americana Mill. var 3 Lauraceae Aguacate tipo Hass, Xúga (Z) H. F, C 1, 4, 5 1.18
142Persea americana Mill var 4 Lauraceae Aguacatillo verde, Xúga laz (Z) H. F, C 1, 2, 4, 5 2.37
143Persea americana Mill var 5 Lauraceae Aguacatillo morado, Xu la'u (Z) H. F, C 1, 4, 5 1.56
144Persea schiedeana Nees. Lauraceae Aguacate chupón, Xudu dxi (Z) C 1, 2, 4, 5 2.11
145Lilium bulbiferum L. Liliaceae Azucena, Ducen (Z) H. F 3 0.92
146Lilium candidum L. Liliaceae Azucena, Ducen (Z) H. F 3 0.73
147Byrsonima crassifolia (L.) Kunth Malpighiaceae Nanche, Lau böza (Z) C 4, 1 1.05
148Magnolia macrophylla var. dealbata (Zucc.) D. L. Johnson Magnoliaceae Magnolia, Yaj zá'a (Z) C, M 2, 3, 7 1.42
149Heliocarpus appendiculatus Turcz. Malvaceae Árbol de sombra blanco, Ye guidi chquich (Z) C 4, 5 1.16
150Heliocarpus donnellsmithii Rose Malvaceae Árbol de sombra rojo Ye guidi gach (Z) C 4, 5 1.16
151Hibiscus rosa-sinensis L. Malvaceae Tulipán rosa H. F 3 0.78
152Malva parviflora L. Malvaceae Cuan lu'g bitz (Z) C 9 0.77
153Sida rhombifolia L. Malvaceae Yaj xúba (Z) C 6 0.67
154Calathea lancifolia Boom Marantaceae Hierba del campo Guixi' (Z) H. F 3 0.86
155Conostegia xalapensis D. Don Melastomataceae Lalá (Z) C, M 1 0.72
156Miconia prasina (Sw.) DC. Melastomataceae Lala montés, Lalá guía (Z) M 1 0.83
157Musa acuminata Colla. var 1 Musaceae Plátano morado Yöla morado (Z) H. F, C 1, 2, 7 1.44
158Musa acuminata Colla. var 2 Musaceae Plátano de la india Yöla iina (Z) H. F, C 1, 2, 7 1.19
159Musa acuminata Colla. var 3 Musaceae Plátano manzanita Yöla manzan (Z) H. F, C 1, 2, 7 1.26
160Musa acuminata Colla. var 4 Musaceae Plátano ratán, Yöla ratan (Z) H. F, C 1, 2, 7 1.47
161Musa x paradisiaca L. var 1 Musaceae Plátano chaparro Yöla chaparr (Z) H. F, C 1, 2, 7 1.46
162Musa x paradisiaca L. var 2 Musaceae Plátano macho, Yöla bdua (Z) H. F, C 1, 2, 7 1.33
163Musa x paradisiaca L. var 3 Musaceae Plátano de castilla Yöla xtil (Z) H. F, C 1, 2, 7 1.38
164Musa x paradisiaca L. var 4 Musaceae Plátano de burro Yöla burro (Z) H. F, C 1, 2, 7 1.55
165Musa x paradisiaca L. var 5 Musaceae Plátano ineo, Yöla gasj (Z) H. F, C 1, 2, 7 1.53
166Psidium friedrichsthalianum (O. Berg) Nied. Myrtaceae Guayabina, Huiy'zin (Z) H. F, C 1, 2 0.67
167Psidium guajava L. var 1 Myrtaceae Guayaba, Uyaj (Z) H. F, C 1, 2, 4, 5 2.52
168Psidium guajava L. var 2 Myrtaceae Guayaba pirulera, Uyaj xtil (Z) H. F, C 1, 4, 5 1.47
169Syzygium jambos (L.) Alston Myrtaceae Guayaba rosa, Uyaj xtil gach (Z) H. F 1, 4, 5 1.39
170Bougainvillea glabra Choisy Nyctaginaceae Bugambilia H. F 3 1.52
171Lopezia racemosa Cav. Onagraceae Hierba, Guixi' (Z) C, M 9 0.88
172Oenothera rosea L'Hér. ex Aiton Onagraceae Hierba, Guixi' (Z) C 9 0.92
173Dichaea glauca (Sw.) Lindl. Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.85
174Oncidium hastatum (Bateman) Lindl. Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.77
175Prosthechea cochleata (L.) W.E. Higgins Orchidaceae Orquídea, Yaj ra'bedx (Z) C 3 0.94
176Prosthechea radiata (Lindl.) W.E. Higgins Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.79
177Prosthechea vitellina (Lindl.) W.E. Higgins Orchidaceae Orquídea, Yaj ra'bedx (Z) H. F 3 0.73
178Stanhopea whittenii Soto Arenas, Salazar & G. Gerlach. Orchidaceae Orquídea torito, Yaj ra'bedx (Z) H. F 3 0.81
179Oxalis latifolia Kunth Oxalidaceae Hierba, Guixi' (Z) C 1, 2 1.24
180Argemone platyceras Link & Otto Papaveraceae Hierba Silvestre, Yaj yötzi guía (Z) C 9 0.67
181Passiflora edulis Sims. Passifloraceae Maracuya, Guixi' lbá maracuyá (Z) H. F 1 0.81
182Passiflora ligularis Juss. Passifloraceae Granadina/Grana de moco, Carnedil (Z) H. F, C 1 0.67
183Phytolacca icosandra L. Phytolaccaceae Quelite, Cuan bédx (Z) M 1 0.92
184Pinus chiapensis (Martínez) Andresen Pinaceae Pino, Yag' yör dáu (Z) C 8, 4, 5 1.47
185Pinus sp. Pinaceae Pino, Yag'yör bedx (Z) C 8, 4, 5 1.4
186Peperomia sp. Piperaceae Hierba del campo C 2 0.67
187Piper sanctum (Miq.) Schltdl. ex C.DC. Piperaceae Hierba santa, La'xuá (Z) H. F, C 1, 2, 7 1.12
188Piper umbellatum L. Piperaceae Hierba santa silvestre Laga lá'up (Z) C 2 0.83
189Plantago major L. Plantaginaceae Hierba cerca de los ríos, Yaj ra'yego (Z) C 2 0.77
190Cymbopogon citratus (DC.) Stapf. Poaceae Té limón H. F 1, 2 1.06
191Saccharum officinarum L. Poaceae Caña, Yö'tj (Z) H. F 1, 6 1.17
192Setaria parviflora (Poir.) Kerguelen. Poaceae Hierba, Da'ca (Z) C 9 1.19
193Zea mays L. Poaceae Maíz, Yöl (Z) H. F, C, M 1, 2, 6, 9 1.78
194Portulaca oleracea L. Portulacaceae Verdolagas, Cuan bía'yú (Z) H. F, M 1 0.92
195Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult. Primulaceae Árbol de frutos pequeños, Yag la'zub (Z) C 5, 4 1.25
196Adiantum capillus-veneris L. Pteridaceae Helecho, Güi bshz (Z) C, M 6 0.86
197Punica granatum L. Punicaceae Granada, Bzá'a (Z) H. F 1, 4 1.1
198Eriobotrya japonica (Thunb.) Lindl. Rosacea Níspero H. F, C 1, 4, 7, 5 1.76
199Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier Rosacea Fresa H. F 1 0.67
200Prunus persica (L.) Batsch. Rosacea Durazno, Traz (Z) H. F, C 1, 2, 4, 7. 5 3.05
201Rosa sp. Rosacea Rosal, Yaj ros (Z) H. F 3 0.86
202Rubus ulmifolius Schott Rosacea Zarzamora, Bez'ká (Z) C 1 0.83
203Coccocypselum cordifolium Nees & Mart. Rubiaceae Chumpá, Chumpá'siu (Z) C 1, 2 1.06
204Coffea arabica L. Rubiaceae Café, Yag cape (Z) H. F, C 1, 4 1.1
205Crusea calocephala DC. Rubiaceae Hierba, Guixi' (Z) M 9 0.9
206Gardenia jasminoides J. Ellis Rubiaceae Gardenia, Yaj garden (Z) H. F 3 0.9
207Hamelia patens Jacq. Rubiaceae Arbusto, Lane böni xtil (Z) H. F, C 3, 7 1.13
208Spermacoce laevis Lam. Rubiaceae Yerba de flor rosa, Xquiaj (Z) C 9 1.22
209Citrus aurantiifolia (Christm.) Swingle Rutaceae Limón H. F, C 1, 4, 5 1.12
210Citrus × aurantium L. Rutaceae Naranja, Uiy (Z) H. F, C 1, 8, 4, 5 1.85
211Citrus aurantiifolia (Christm.) Swingle Rutaceae Lima limón, Uiy lim (Z) H. F, C 1, 4, 5 1.44
212Citrus medica L. Rutaceae Lima, Guiy xi'x (Z) H. F, C 1, 8, 4, 5 1.93
213Citrus reticulata Blanco Rutaceae Mandarina H. F, C 1, 4, 5 1.42
214Citrus x aurantium L. Rutaceae Naranja china, Uiy chin (Z) H. F, C 1, 4, 5 1.41
215Ruta chalepensis L. Rutaceae Ruda, Rud (Z) H. F 2 0.9
216Sapindus saponaria L. Sapindaceae Pipe, Bua bibi (Z) C 8, 4, 5 1.36
217Pouteria campechiana (Kunth) Baehni Sapotaceae Zapote, La'tzä (Z) C 1, 4, 5 1.5
218Pouteria sapota (Jacq.) H.E. Moore & Stearn Sapotaceae Mamey, La'xon (Z) H. F, C 1, 4, 5 1.47
219Manilkara zapota (L.) P. Royen Sapotaceae Chicozapote C 1, 8, 4, 5 1.92
220Brugmansia × candidaPers. Solanaceae Floripondio blanco, Yaj bua ijed (Z) H. F, C 7, 3 1.1
221Brugmansia suaveolens (Humb. & Bonpl. ex Willd.) Sweet Solanaceae Floripondio rosa, Yaj bua ijed(Z) H. F, C 7, 3 1.22
222Capsicum annuum var. annuum 1 Solanaceae Chile cimarrón, Guina'zimarrón (Z) H. F, C 1 0.89
223Capsicum annuum var. annuum 2 Solanaceae Chile verde, Guina'ya'a (Z) H. F 1 0.76
224Capsicum annuum var. annuum 3 Solanaceae Chile serrano, Guina'serrano (Z) H. F, C 1 0.79
225Capsicum annuum var. glabriusculum (Dunal) Heiser & Pickersgill Solanaceae Chile piquín, Guina'hue'n (Z) H. F, C 1 0.72
226Capsicum pubescens Ruiz & Pav. Solanaceae Chile marongo o canario, Guina'marongo (Z) H. F, C, M 1 0.9
227Cestrum nocturnum L. Solanaceae Huele de noche, Cuan xu'u (Z) H. F, C, M 1, 2, 3, 7 1.9
228Physalis ixocarpa Brot. ex Hornem Solanaceae Miltomate, Bex qui'x (Z) H. F, C 1 0.85
229Solanum lycopersicum L. Solanaceae Tomate, Bex lua (Z) H. F 1 0.93
230Solanum lycopersicum L. Solanaceae Tomatito chiquito, Bex laz (Z) H. F, C 1, 2 1.22
231Solanum nigrescens M. Martens & Galeotti Solanaceae Hierba mora, Bex iechugu (Z) H. F, C 2 0.87
232Tropaeolum majus L. Tropaeolaceae Mastuerzo, Yaj guixi' (Z) H. F 3 0.73
233Boehmeria caudata Sw. Urticaceae Chit laca, Xit'lá'ca (Z) C 5, 4 1.21
234Cecropia obtusifolia Bertol. Urticaceae Yag yeré (Z) C 8, 4, 5 1.47
235Lantana camara L. Verbenaceae Hierba amarga, Yaj xía (Z) C 2 0.84
236Kniphofia uvaria (L.) Oken Xanthorrhoeaceae Cola de ratón, Xbamba bxí'dzu (Z) H. F 3, 7 1.25
237Aloe vera (L.) Burm.f. Xanthorrhoeaceae Sábila H. F 2 0.93
238Hedychium coronarium J. Koenig Zingiberaceae Flor de agua, Yaj yöla (Z) C 3 0.85

Supplementary data 2.

Chi-square and proportions test

For the general test the α = 0.05; while for paired tests (post hoc) the new one α = k(k-1/2); where k is the number of groups compared in the general test.

Table S2.1. 

Chi-square test for the biological form categories of the three agroforestry systems species in general and their comparison in pairs. χ2 (5,211) = 259.25, p < 0.001. New alpha of 0.0033 for paired comparisons.

Pair comparedChi-square and p value Pair comparedChi-square and p value
Herbaceous-Treesχ2 (1,181) = 32.75, p < 0.001Trees-Fernsχ2 (1,55) = 43.65, p < 0.001
Herbaceous-Shrubsχ2 (1,154) = 70.23, p < 0.001Shrubs -Climbingχ2 (1,45) = 0.55, p = 0.45
Herbaceous-Climbingχ2 (1,149) = 79.73, p < 0.001Shrubs-Epiphytesχ2 (1,34) = 7.52, p = 0.006
Herbaceous-Epiphytesχ2 (1,38) = 104.35, p < 0.001Shrubs-Fernsχ2 (1,28) = 17.28, p < 0.001
Herbaceous-Fernsχ2 (1,132) = 120.27, p < 0.001Climbing-Epiphytesχ2 (1,29) = 4.17, p = 0.04
Trees-Shrubsχ2 (1,77) = 9.46, p < 0.001Climbing-Fernsχ2 (1,23) = 12.56, p < 0.001
Trees-Climbingχ2 (1,72) = 14.22, p < 0.001Epiphytes-Fernsχ2 (1,12) = 3, p = 0.08
Trees-Epiphytesχ2 (1,61) = 30.31, p < 0.001

Table S2.2. 

Proportion test for the biological form of species between the three Agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons.

Home gardens-Coffee plantationsHome gardens-MilpaCoffee plantations-Milpa

  • Herbaceous

  • χ2 (2,119) = 63.21, p < 0.001

χ2 (1,119) = 4.13, p = 0.04χ2 (1,119) = 32.35, p < 0.001χ2 (1,119) = 14.4, p < 0.001

  • Trees

  • χ2 (2,45) = 39.61, p < 0.001

χ2 (1,45) = 8.56, p < 0.001χ2 (1,45) = 14.28, p < 0.001χ2 (1,45) = 32.20, p < 0.001

  • Shrubs

  • χ2 (2,21) = 17.45, p < 0.001

χ2 (1,21) = 0.23, p = 0.63χ2 (1,21) = 18.18, p < 0.001χ2 (1,21) = 15.21, p < 0.001

  • Climbing

  • χ2 (2,18) = 5.10, p = 0.07

χ2 (1,18) = 2.13, p = 0.14χ2 (1,18) = 4.48, p = 0.03χ2 (1,18) = 0.47, p = 0.49

  • Epiphytes

  • χ2 (2,7) = 5.6, p = 0.06

χ2 (1,7) = 0.4, p = 0.52χ2 (1,7) = 6, p < 0.001χ2 (1,7) = 4, p = 0.04

  • Ferns

  • χ2 (2,3) = 1.6, p = 0.44

χ2 (1,3) = 0, p = 1χ2 (1,3) = 0, p = 1χ2 (1,3) = 1, p = 0.31

Table S2.3. 

Chi-square test for the categories of origin of species of agroforestry systems in general and proportional test for their comparison in pairs. χ2 (1,211) =7. 20, p = 0.001. New alpha of 0.016 for paired comparisons.

Home gardens-Coffee plantationsHome gardens-MilpaCoffee plantations-Milpa

  • Native

  • χ2 (2,125) = 45.51, p < 0.001

χ2 (1,125) = 6.69, p < 0.001χ2 (1,125) = 19.66, p < 0.001χ2 (1,125) = 46.37, p < 0.001

  • Introduced

  • χ2 (2,86) = 60.10, p < 0.001

χ2 (1,86) = 17.06, p < 0.001χ2 (1,86) = 54.93, p < 0.001χ2 (1,86) = 14.29, p < 0.001

Table S2.4. 

Chi-square test for the categories of plant management grade of agroforestry systems in general and their comparison in pairs. χ2 (4,211) = 314.19, p < 0.001. New alpha of 0.005 for paired comparisons.

Pair comparedChi-square and p valuePair comparedChi-square and p value
Cultivated-Wildχ2 (1,189) =24.89, p < 0.001Wild-Promotedχ2 (1,75) = 67.21, p < 0.001
Cultivated-Toleratedχ2 (1,160) = 112.22, p < 0.001Wild-Protectedχ2 (1,76) = 64.47, p < 0.001
Cultivated- Promotedχ2 (1,149) = 141.11, p < 0.001Tolerated-Promotedχ2 (1,15) = 8.06, p < 0.001
Cultivated-Protectedχ2 (1, 150) = 138.24, p < 0.001Tolerated-Protectedχ2 (1,16) = 6.25, p = 0.01
Wild-Toleratedχ2 (1, 86) = 41.86, p < 0.001Promoted-Protectedχ2 (1,5) = 0.2, p = 0.65

Table S2.5. 

Proportion test for the degree of plant management between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons.

Home gardens-Coffee plantationsHome gardens-MilpaCoffee plantations-Milpa

  • Cultivated

  • χ2 (2, 135) = 85.19, p < 0.001

χ2 (1, 135) = 16.98, p < 0.001χ2 (1, 135) = 84.23, p < 0.001χ2 (1,135) = 31.18, p < 0.001

  • Wild

  • χ2 (2,62) = 45.02, p < 0.001

χ2 (1,62) = 26.16, p < 0.001χ2 (1,62) = 0.03, p = 0.85χ2 (1,62) = 27.74, p < 0.001

  • Tolerated

  • χ2 (2,9) = 1.9, p = 0.38

χ2 (1,9) = 0.25, p = 0.61χ2 (1,9) = 0.81 p = 0.36χ2 (1,9) = 1.92, p = 0.16

  • Promoted

  • χ2 (2,2) = 0, p = 1

χ2 (1,2) = 0, p = 1χ2 (1,2) = 0, p = 1χ2 (1,2) = 0, p = 1

  • Protected

  • χ2 (2,3) = 3.5, p = 0.17

χ2 (1,3) = 1, p = 0.31χ2 (1,3) = 1, p = 0.31χ2 (1,3) = 3, p = 0.08

Table S2.6. 

Proportion test for the species richness of agroforestry systems in general and their comparison in pairs. χ2 (2,211) = 162.71, p < 0.001. New alpha of 0.016 for paired comparisons.

Pair comparedChi-square and p value
Home gardens-Coffee plantationsχ2 (1,211) = 1.19, p = 0.27
Home gardens-Milpaχ2 (1,211) = 130.11, p < 0.001
Coffee plantations-Milpa χ2 (1,211) = 107.67, p < 0.001

Table S2.7. 

Proportion test for used part of agroforestry systems plants in general and their comparison in pairs. χ2 (7,211) = 453.83, p < 0.001). New alpha of 0.0017 for paired comparisons.

Pair comparedChi-square and p valuePair comparedChi-square and p value
Whole plant-Leavesχ2 (1,211) = 67.24, p < 0.001Flower-Stem χ2 (1,211) = 7.50, p = 0.006
Whole plant-Flowerχ2 (1,211) = 127.84, p < 0.001Flower-Seedχ2 (1,211) = 8.28, p = 0.004
Whole plant-Fruitχ2 (1,211) = 53.99, p < 0.001Flower-Podχ2 (1,211) = 18.78, p < 0.001
Whole plant-Stemχ2 (1,211) = 78.78, p < 0.001Flower-Rootχ2 (1,211) = 23.09, p < 0.001
Whole plant-Seedχ2 (1,221) = 179.74, p < 0.001Fruit-Stemχ2 (1,211) = 2.42, p = 0.11
Whole plant-Podχ2 (1,211) = 202.59, p < 0.001Fruit-Seedχ2 (1,211) = 49.09, p < 0.001
Whole plant-Rootχ2 (1,211) = 209.55, p < 0.001Fruit-Pod χ2 (1,211) = 66.15, p < 0.001
Leaves-Flowerχ2 (1,211) = 12.02, p < 0.001Fruit-Root χ2 (1,211) = 71.82, p < 0.001
Leaves-Fruitχ2 (1,211) = 0.66, p = 0.41Stem-Seedχ2 (1,211) = 30.64, p < 0.001
Leaves-Stemχ2 (1,211) = 0.40, p = 0.52Stem-Podχ2 (1,211) = 45.78, p < 0.001
Leaves-Seedχ2 (1,211) = 38.41, p < 0.001Stem-Rootχ2 (1,211) = 51.06, p < 0.001
Leaves-Podχ2 (1,211) = 54.47, p < 0.001Seed-Podχ2 (1,211) = 2.19, p = 0.13
Leaves-Rootχ2 (1,211) = 59.93, p < 0.001Seed-Rootχ2 (1,211) = 4.40, p = 0.03
Flower-Fruitχ2 (1,211) = 18.97, p < 0.001Pod-Rootχ2 (1,211) = 0.12, p = 0.72

Table S2.8. 

Proportion test for used part of plants between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons.

Used partHome gardens-Coffee plantationsHome gardens-MilpaCoffee plantations-Milpa

  • Whole plant

  • χ2 (2, 205) = 90.45, p < 0.001

χ2 (1, 205) = 0.15, p = 0.69χ2 (1, 205) = 70.70, p < 0.001χ2 (1,205) = 78.18, p < 0.001

  • Leaves

  • χ2 (2,106) = 28.04, p < 0.001

χ2 (1,106) = 1.23, p < 0.26χ2 (1,106) = 25.64, p < 0.001χ2 (1,106) = 15.16, p < 0.001

  • Flower

  • χ2 (2,44) = 13.54, p = 0.16

χ2 (1,44) = 0.04, p = 0. 82χ2 (1,44) = 2.56, p = 0.10χ2 (1,44) = 1.36, p = 0.24

  • Fruit

  • χ2 (2,129) = 50.44, p < 0.001

χ2 (1,129) = 0.06, p = 0.80χ2 (1,129) = 38.30, p < 0.001χ2 (1,129) = 42.55, p < 0.001

  • Stem

  • χ2 (2,85) = 56.04, p < 0.001

χ2 (1,85) = 10.41, p < 0.001χ2 (1,85) = 19.44, p < 0.001χ2 (1,85) = 53.92, p < 0.001

  • Seed

  • χ2 (2,26) = 2.19, p = 0.33

χ2 (1,26) = 1.39, p = 0.23χ2 (1,26) = 0.08, p = 0.77χ2 (1,26) = 0.37, p = 0.54

  • Pod

  • χ2 (2,12) = 0.75, p = 0.68

χ2 (1,12) = 0.01, p = 1χ2 (1,12) = 0.01, p = 1 χ2 (1,12) = 0.18, p = 0.66

  • Root

  • χ2 (2,4) = 3, p = 0.22

χ2 (1,4) = 0.01, p = 1χ2 (1,4) = 0.66, p = 0.41χ2 (1,4) = 0.66, p = 0.41

Table S2.9. 

Proportion test for the destination of species of agroforestry systems in general and their comparison in pairs. χ2 (2,211) = 492.11, p < 0.001. New alpha of 0.016 for paired comparisons.

DestinationChi-square and p value
Self-consumption-Sellingχ2 (1,211) = 304.4, p < 0.001
Self-consumption-Barteringχ2 (1,211) = 394.78, p < 0.001
Selling-Bartering χ2 (1,211) = 19.09, p < 0.001

Table S2.10. 

Proportion test for destination of species between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons.

DestinationHome gardens-Coffee plantationsHome gardens-MilpaCoffee plantations-Milpa

  • Self-consumption

  • χ2 (2, 211) = 162.71, p < 0.001

χ2 (1, 211) = 1.19, p = 0.27χ2 (1, 211) = 130.11, p < 0.001χ2 (1,211) = 107.67, p < 0.001

  • Selling

  • χ2 (2,57) = 12.78, p < 0.001

χ2 (1,57) = 2.31, p = 0.12χ2 (1,57) = 11.40, p < 0.001χ2 (1,57) = 2.95, p = 0.08

  • Bartering

  • χ2 (2,14) = 1.5, p = 0.47

χ2 (1,14) = 0.17, p = 0.67χ2 (1,14) = 0.01, p = 1χ2 (1,14) = 0.65, p = 0.41

Table S2.11. 

Proportion test for categories of plants use of agroforestry systems in general and their comparison in pairs. χ2 (8,211) = 260.83, p < 0.001. New alpha of 0.0013 for paired comparisons.

Pair comparedChi-square and p valuePair comparedChi-square and p value
Food-Medicinalχ2 (1,211) = 39.77, p < 0.001Ornamental-Live fenceχ2 (1,211) = 26.11, p < 0.001
Food-Ornamentalχ2 (1,211) = 9.50, p = 0.002Ornamental-Construction χ2 (1,211) = 52.61, p < 0.001
Food-Firewoodχ2 (1,211) = 35.86, p < 0.001Ornamental-Forageχ2 (1,211) = 56.92, p < 0.001
Food-Shadeχ2 (1,211) = 38.44, p < 0.001Firewood-Shadeχ2 (1,211) = 0.01, p = 0.90
Food-Domestic useχ2 (1,211) = 116.93, p < 0.001Firewood-Domestic useχ2 (1,211) = 30.95, p < 0.001
Food-Live fenceχ2 (1,211) = 65.32, p < 0.001Firewood-Live fenceχ2 (1,211) = 4.82, p = 0.02
Food-Construction χ2 (1,211) = 100.55, p < 0.001Firewood-Construction χ2 (1,211) = 20.59, p < 0.001
Food-Forageχ2 (1,211) = 105.79, p < 0.001Firewood-Forageχ2 (1,211) = 23.70, p < 0.001
Medicinal-Ornamental χ2 (1,211) = 10.37, p < 0.001Shade-Domestic useχ2 (1,211) = 28.78, p < 0.001
Medicinal-Firewoodχ2 (1,211) = 0.05, p = 0.82Shade-Live fenceχ2 (1,211) = 3.88, p = 0.04
Medicinal-Shadeχ2 (1,211) = 0.01, p = 1Shade-Construction χ2 (1,211) = 18.73, p < 0.001
Medicinal-Domestic useχ2 (1,211) = 27.70, p < 0.001Shade-Forageχ2 (1,211) = 21.73, p < 0.001
Medicinal-Live fenceχ2 (1,211) = 3.44, p = 0.06Domestic use-Live fenceχ2 (1,211) = 12.03, p < 0.001
Medicinal-Construction χ2 (1,211) = 17.82, p < 0.001Domestic use-Construction χ2 (1,211) = 1.09, p = 0.29
Medicinal-Forageχ2 (1,211) = 20.76, p < 0.001Domestic use-Forageχ2 (1,211) = 0.42, p = 0.51
Ornamental-Firewood χ2 (1,211) = 8.33, p < 0.001Live fence-Construction χ2 (1,211) = 5.41, p = 0.01
Ornamental-Shadeχ2 (1,211) = 9.66, p < 0.001Live fence-Forageχ2 (1,211) = 7.23, p < 0.001
Ornamental-Domestic useχ2 (1,211) = 66.37, p < 0.001Construction -Forageχ2 (1,211) = 0.03, p = 0.84

Table S2.12. 

Proportion test for categories of plants use between the three agroforestry systems and their comparison in pairs. New alpha of 0.016 for paired comparisons.

Use categoryHome gardens-Coffee plantationsHome gardens-MilpaCoffee plantations-Milpa

  • Food

  • χ2 (2, 113) = 57.07, p < 0.001

χ2 (1, 113) = 0.25, p = 0.61χ2 (1, 113) = 48.99, p < 0.001χ2 (1,113) = 41.44, p < 0.001

  • Ornamental

  • χ2 (2,79) = 31.84, p < 0.001

χ2 (1,79) = 0.44, p = 0.50χ2 (1,79) = 20.85, p < 0.001χ2 (1,79) = 28.11, p < 0.001

  • Medicinal

  • χ2 (2,47) = 64.72, p < 0.001

χ2 (1,47) = 23.11, p < 0.001χ2 (1,47) = 58, p < 0.001χ2 (1,47) = 9.36, p < 0.001

  • Firewood

  • χ2 (2, 50) = 61.82, p < 0.001

χ2 (1, 50) = 15.59, p < 0.001χ2 (1, 50) = 16.84, p < 0.001χ2 (1,50) = 57.92, p < 0.001

  • Shade

  • χ2 (2,48) = 62.02, p < 0.001

χ2 (1, 48) = 17.63, p < 0.001χ2 (1, 48) = 14.49, p < 0.001χ2 (1,48) = 57.07, p < 0.001

  • Domestic use

  • χ2 (2, 9) = 109.89, p = 0.15

χ2 (1, 9) = 1.46, p = 0.22χ2 (1, 9) = 0.01, p = 1χ2 (1,9) = 1.46, p = 0.22

  • Live fence

  • χ2 (2, 31) = 25.8, p < 0.001

χ2 (1, 31) = 0.17, p = 0.67χ2 (1, 31) = 22.15, p < 0.001χ2 (1,31) = 17.38, p < 0.001

  • Construction

  • χ2 (2,15) = 24.45, p < 0.001

χ2 (1, 15) = 10.02, p < 0.001χ2 (1, 15) = 0.91, p < = 0.33χ2 (1,15) = 17.60, p < 0.001

  • Forage

  • χ2 (2, 13) = 10.76, p < 0.001

χ2 (1, 13) = 8.60, p < 0.001χ2 (1, 13) = 2.87, p = 0.08χ2 (1,13) = 1.06, p = 0.30

 

 

 

 

Associated Editor: José Blancas

Author contributions: SPM, Research design, bibliographic review, field work, database compilation, statistical data management, writing analysis; GIMM, Research design, bibliographic review, taxonomic determination of species, writing, analysis and revision of the manuscript; ASV, Bibliographic review, statistical data management, writing, analysis and revision of the manuscript; MAVD, Bibliographic review, taxonomic determination of species, writing, analysis and revision of the manuscript.

This is an open-access article distributed under the terms of the Creative Commons Attribution License